Comptes Rendus
Probability Theory
Baum–Katz type theorems for martingale arrays
Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 91-96.

We show convergence rates in the law of large numbers for martingale arrays. The results extend the classical theorems of Baum and Katz (1965) [2] for sums of independent and identically distributed (i.i.d.) random variables. They improve a result of Ghosal and Chandra (1998) [6] for martingale arrays, and generalize a result of Alsmeyer (1990) [1] for a single martingale. As an application, we obtain a new theorem about the convergence rate of Cesàro summation of identically distributed random variables.

Nous montrons la vitesse de convergence dans la loi des grand nombres pour un tableau de martingales. Les résultats étendent les théorèmes classiques de Baum et Katz (1965) [2] pour les sommes de variables aléatoires indépendantes et identiquement distribuées (i.i.d.). Ils améliorent un résultat de Ghosal et Chandra (1998) [6] pour des tableaux de martingales, et généralisent un résultat dʼAlsmeyer (1990) [1] pour une seule martingale. Comme application, nous obtenons un théorème nouveau concernant la vitesse de convergence pour des sommes de Cesàro de variables aléatoires identiquement distribuées.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.12.006

Shunli Hao 1, 2; Quansheng Liu 1, 2

1 Université de Bretagne-Sud, UMR 6205, Laboratoire de Mathématiques de Bretagne Atlantique, campus de Tohannic, BP 573, 56017 Vannes, France
2 Université Européenne de Bretagne, France
@article{CRMATH_2012__350_1-2_91_0,
     author = {Shunli Hao and Quansheng Liu},
     title = {Baum{\textendash}Katz type theorems for martingale arrays},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {91--96},
     publisher = {Elsevier},
     volume = {350},
     number = {1-2},
     year = {2012},
     doi = {10.1016/j.crma.2011.12.006},
     language = {en},
}
TY  - JOUR
AU  - Shunli Hao
AU  - Quansheng Liu
TI  - Baum–Katz type theorems for martingale arrays
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 91
EP  - 96
VL  - 350
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2011.12.006
LA  - en
ID  - CRMATH_2012__350_1-2_91_0
ER  - 
%0 Journal Article
%A Shunli Hao
%A Quansheng Liu
%T Baum–Katz type theorems for martingale arrays
%J Comptes Rendus. Mathématique
%D 2012
%P 91-96
%V 350
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2011.12.006
%G en
%F CRMATH_2012__350_1-2_91_0
Shunli Hao; Quansheng Liu. Baum–Katz type theorems for martingale arrays. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 91-96. doi : 10.1016/j.crma.2011.12.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.12.006/

[1] G. Alsmeyer Convergence rates in the law of large numbers for martingales, Stochastic Process. Appl., Volume 36 (1990), pp. 181-194

[2] L.E. Baum; M. Katz Convergence rates in the law of large numbers, Trans. Amer. Math. Soc., Volume 120 (1965), pp. 108-123

[3] Y.S. Chow; T.L. Lai Limiting behavior of weighted sums of independent random variables, Ann. Prob., Volume 1 (1973), pp. 810-824

[4] Y. Déniel; Y. Derriennic Sur la convergence prèsque sure, au sens de Cesàro dʼordre α, 0<α<1, de variables aléatoires et indépendantes et identiquement distribuées, Probab. Theory Related Fields, Volume 79 (1949), pp. 629-636

[5] P. Erdös On a theorem of Hsu and Robbins, Ann. Math. Statist., Volume 20 (1949), pp. 286-291

[6] S. Ghosal; T.K. Chandra Complete convergence of martingale arrays, J. Theor. Prob., Volume 3 (1998), pp. 621-631

[7] A. Gut Complete convergence and Cesàro summation for i.i.d. random variables, Probab. Theory Related Fields, Volume 97 (1993), pp. 169-178

[8] P.L. Hsu; H. Robbins Complete convergence and the law of large numbers, Proc. Natl. Acad. Sci. USA, Volume 33 (1947), pp. 25-31

[9] H. Lanzinger; U. Stadtmüller Baum–Katz laws for certain weighted sums of independent and identically distributed random variables, Bernoulli, Volume 9 (2003), pp. 985-1002

[10] E. Lesigne; D. Volný Large deviations for martingales, Stochastic Process. Appl., Volume 96 (2001), pp. 143-159

[11] G.G. Lorentz Borel and Banach properties of methods of summation, Duke Math. J., Volume 22 (1955), pp. 129-141

[12] F. Spitzer A combinatorial lemma and its applications to probability theory, Trans. Amer. Math. Soc., Volume 82 (1956), pp. 323-339

[13] G. Stoica Baum–Katz–Nagaev type results for martingales, J. Math. Anal. Appl., Volume 336 (2007), pp. 1489-1492

Cited by Sources:

Comments - Policy