This Note deals with a short-time existence result for a system of nonlinear partial differential equations modelling a diphasic flow. The so-called Dlmn system is derived from the compressible Navier–Stokes equations under the assumption that the Mach number is small. A classical solution is obtained by means of a Picard iteration process. The proof of convergence relies on estimates associated to hyperbolic and parabolic equations. This procedure results in conditions on the time of existence of the solution.
Cette Note est consacrée à un résultat dʼexistence en temps court dʼune solution classique à un système non-linéaire dʼéquations aux dérivées partielles. Ce système, appelé Dlmn, correspond à lʼordre 0 dans le développement asymptotique à bas nombre de Mach des équations de Navier–Stokes (adimensionnées). Afin de prouver lʼexistence dʼune solution, on construit une suite de type itérées de Picard, dont la convergence repose sur des estimations associées aux équations hyperboliques et paraboliques présentes dans le système. Il en résulte des contraintes portant sur le temps dʼexistence de la solution.
Accepted:
Published online:
Yohan Penel 1
@article{CRMATH_2012__350_1-2_51_0, author = {Yohan Penel}, title = {Well-posedness of a low {Mach} number system}, journal = {Comptes Rendus. Math\'ematique}, pages = {51--55}, publisher = {Elsevier}, volume = {350}, number = {1-2}, year = {2012}, doi = {10.1016/j.crma.2011.12.009}, language = {en}, }
Yohan Penel. Well-posedness of a low Mach number system. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 51-55. doi : 10.1016/j.crma.2011.12.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.12.009/
[1] On a diphasic low Mach number system, ESAIM:M2AN, Volume 39 (2005), pp. 487-514
[2] Numerical resolution of a potential diphasic low Mach number system, J. Comput. Phys., Volume 223 (2007) no. 1, pp. 151-187
[3] Well-posedness of the nonlinear equations for zero Mach number combustion, Comm. Partial Differential Equations, Volume 12 (1987), pp. 1227-1283
[4] P. Embid, Well-posedness of the nonlinear equations for zero Mach number combustion, Ph.D. thesis, Univ. Calif. Berkeley, 1984.
[5] Thermo-fluid Dynamics of Two-Phase Flow, Springer-Verlag, 2010
[6] Compressible and incompressible fluids, Comm. Pure Appl. Math., Volume 35 (1982), pp. 629-651
[7] The derivation and numerical solution of the equations for zero Mach number combustion, Combust. Sci. Technol., Volume 42 (1985), pp. 185-205
[8] A rapidly convergent iteration method and nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa, Volume 20 (1966), pp. 265-315
[9] S. Paolucci, Filtering of sound from the Navier–Stokes equations, NASA STI/Recon Technical Report, 83, 1982.
[10] Y. Penel, Étude théorique et numérique de la déformation dʼune interface séparant deux fluides non-miscibles à bas nombre de Mach, Ph.D. thesis, Univ. Paris 13, 2010. Available at http://tel.archives-ouvertes.fr/tel-00547865/fr/.
[11] Y. Penel, Global solutions to the 1D abstract bubble vibration model, submitted for publication. Available at . | HAL
[12] Y. Penel, S. Dellacherie, O. Lafitte, Theoretical study of an abstract bubble vibration model, submitted for publication. Available at . | HAL
Cited by Sources:
Comments - Policy