Comptes Rendus
Partial Differential Equations
Well-posedness of a low Mach number system
Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 51-55.

This Note deals with a short-time existence result for a system of nonlinear partial differential equations modelling a diphasic flow. The so-called Dlmn system is derived from the compressible Navier–Stokes equations under the assumption that the Mach number is small. A classical solution is obtained by means of a Picard iteration process. The proof of convergence relies on estimates associated to hyperbolic and parabolic equations. This procedure results in conditions on the time of existence of the solution.

Cette Note est consacrée à un résultat dʼexistence en temps court dʼune solution classique à un système non-linéaire dʼéquations aux dérivées partielles. Ce système, appelé Dlmn, correspond à lʼordre 0 dans le développement asymptotique à bas nombre de Mach des équations de Navier–Stokes (adimensionnées). Afin de prouver lʼexistence dʼune solution, on construit une suite de type itérées de Picard, dont la convergence repose sur des estimations associées aux équations hyperboliques et paraboliques présentes dans le système. Il en résulte des contraintes portant sur le temps dʼexistence de la solution.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.12.009

Yohan Penel 1

1 Commissariat à lʼénergie atomique et aux énergies alternatives, centre de Saclay – DEN/DANS/DM2S/SFME/LETR, 91191 Gif-sur-Yvette, France
@article{CRMATH_2012__350_1-2_51_0,
     author = {Yohan Penel},
     title = {Well-posedness of a low {Mach} number system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {51--55},
     publisher = {Elsevier},
     volume = {350},
     number = {1-2},
     year = {2012},
     doi = {10.1016/j.crma.2011.12.009},
     language = {en},
}
TY  - JOUR
AU  - Yohan Penel
TI  - Well-posedness of a low Mach number system
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 51
EP  - 55
VL  - 350
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2011.12.009
LA  - en
ID  - CRMATH_2012__350_1-2_51_0
ER  - 
%0 Journal Article
%A Yohan Penel
%T Well-posedness of a low Mach number system
%J Comptes Rendus. Mathématique
%D 2012
%P 51-55
%V 350
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2011.12.009
%G en
%F CRMATH_2012__350_1-2_51_0
Yohan Penel. Well-posedness of a low Mach number system. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 51-55. doi : 10.1016/j.crma.2011.12.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.12.009/

[1] S. Dellacherie On a diphasic low Mach number system, ESAIM:M2AN, Volume 39 (2005), pp. 487-514

[2] S. Dellacherie Numerical resolution of a potential diphasic low Mach number system, J. Comput. Phys., Volume 223 (2007) no. 1, pp. 151-187

[3] P. Embid Well-posedness of the nonlinear equations for zero Mach number combustion, Comm. Partial Differential Equations, Volume 12 (1987), pp. 1227-1283

[4] P. Embid, Well-posedness of the nonlinear equations for zero Mach number combustion, Ph.D. thesis, Univ. Calif. Berkeley, 1984.

[5] M. Ishii; T. Hibiki Thermo-fluid Dynamics of Two-Phase Flow, Springer-Verlag, 2010

[6] A. Majda; S. Klainermann Compressible and incompressible fluids, Comm. Pure Appl. Math., Volume 35 (1982), pp. 629-651

[7] A. Majda; J. Sethian The derivation and numerical solution of the equations for zero Mach number combustion, Combust. Sci. Technol., Volume 42 (1985), pp. 185-205

[8] J. Moser A rapidly convergent iteration method and nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa, Volume 20 (1966), pp. 265-315

[9] S. Paolucci, Filtering of sound from the Navier–Stokes equations, NASA STI/Recon Technical Report, 83, 1982.

[10] Y. Penel, Étude théorique et numérique de la déformation dʼune interface séparant deux fluides non-miscibles à bas nombre de Mach, Ph.D. thesis, Univ. Paris 13, 2010. Available at http://tel.archives-ouvertes.fr/tel-00547865/fr/.

[11] Y. Penel, Global solutions to the 1D abstract bubble vibration model, submitted for publication. Available at . | HAL

[12] Y. Penel, S. Dellacherie, O. Lafitte, Theoretical study of an abstract bubble vibration model, submitted for publication. Available at . | HAL

Cited by Sources:

Comments - Policy