Let E be an abelian scheme over a geometrically connected, smooth variety X defined over k, a finitely generated field over . Let η be the generic point of X and a closed point. If and are the Lie algebras of the ℓ-adic Galois representations for abelian varieties and , then is embedded in by specialization. We prove that the set is independent of ℓ and confirm Conjecture 5.5 in Cadoret and Tamagawa [3].
Soit E un schéma abélien sur une variété lisse et géométriquement connexe X, définie sur un corps k de type fini sur . Soit η le point générique de X et soit un point fermé. Si et sont les algèbres de Lie des représentations ℓ-adiques de Galois des variétés abéliennes et , alors est plongée dans par spécialisation. Nous démontrons que lʼensemble est indépendant de ℓ, ce qui confirme la Conjecture 5.5 de Cadoret et Tamagawa [3].
Accepted:
Published online:
Chun Yin Hui 1
@article{CRMATH_2012__350_1-2_5_0, author = {Chun Yin Hui}, title = {Specialization of monodromy group and \protect\emph{\ensuremath{\ell}}-independence}, journal = {Comptes Rendus. Math\'ematique}, pages = {5--7}, publisher = {Elsevier}, volume = {350}, number = {1-2}, year = {2012}, doi = {10.1016/j.crma.2011.12.012}, language = {en}, }
Chun Yin Hui. Specialization of monodromy group and ℓ-independence. Comptes Rendus. Mathématique, Volume 350 (2012) no. 1-2, pp. 5-7. doi : 10.1016/j.crma.2011.12.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.12.012/
[1] Sur lʼalgébricité des représentations ℓ-adiques, C. R. Acad. Sci. Paris, Ser. I, Volume 290 (1980), pp. 701-703
[2] Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 126, Springer-Verlag, 1991
[3] A. Cadoret, A. Tamagawa, A uniform open image theorem for ℓ-adic representations I, preprint.
[4] Complements to Mordell (G. Faltings; G. Wüstholz, eds.), Rational Points, Seminar Bonn/Wuppertal, 1983–1984, Vieweg, 1984 (Chapter 6)
[5] Jacobian varieties, Arithmetic Geometry, Springer-Verlag, New York, 1986
[6] J.-P. Serre, Letter to K.A. Ribet, Jan. 1, 1981, reproduced in Collected Papers, vol. IV, no. 133.
[7] Abelian varieties, ℓ-adic representations and Lie algebras. Rank independence on ℓ, Invent. Math., Volume 55 (1979), pp. 165-176
[8] Abelian varieties having a reduction of K3 type, Duke Math. J., Volume 65 (1992), pp. 511-527
Cited by Sources:
Comments - Policy