Comptes Rendus
Complex Analysis
Global and local definition of the Monge–Ampère operator on compact Kähler manifolds
[Définition globale et locale de lʼopérateur de Monge–Ampère sur les variétés kählériennes compactes]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 153-156.

Le but de cet article est de donner une condition suffisante pour quʼune fonction dans le domaine global de définition de lʼopérateur Monge–Ampère nʼappartienne pas au domaine local de celui-ci dans le sens de Cegrell, lorsquʼon se place sur un espace projectif complexe de dimension n. En utilisant ce résultat, nous montrons que le théorème de sous-solution est faux pour des fonctions dans le domaine local de définition de lʼopérateur Monge–Ampère sur un tel espace projectif.

The aim of this Note is to give a sufficient condition in order for a function in the global domain of definition of the Monge–Ampère operator not to belong to the local domain of the former in the sense of Cegrell, when one looks at the n-dimensional complex projective space. Using this result, we show that the subsolution theorem is false for functions in the local domain of definition of the Monge–Ampère operator on such a projective space.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.01.025
Le Mau Hai 1 ; Pham Hoang Hiep 1 ; Nguyen Van Phu 2

1 Department of Mathematics, Hanoi National University of Education, Viet Nam
2 Department of Mathematics, Electric Power University, Hanoi, Viet Nam
@article{CRMATH_2012__350_3-4_153_0,
     author = {Le Mau Hai and Pham Hoang Hiep and Nguyen Van Phu},
     title = {Global and local definition of the {Monge{\textendash}Amp\`ere} operator on compact {K\"ahler} manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {153--156},
     publisher = {Elsevier},
     volume = {350},
     number = {3-4},
     year = {2012},
     doi = {10.1016/j.crma.2012.01.025},
     language = {en},
}
TY  - JOUR
AU  - Le Mau Hai
AU  - Pham Hoang Hiep
AU  - Nguyen Van Phu
TI  - Global and local definition of the Monge–Ampère operator on compact Kähler manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 153
EP  - 156
VL  - 350
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2012.01.025
LA  - en
ID  - CRMATH_2012__350_3-4_153_0
ER  - 
%0 Journal Article
%A Le Mau Hai
%A Pham Hoang Hiep
%A Nguyen Van Phu
%T Global and local definition of the Monge–Ampère operator on compact Kähler manifolds
%J Comptes Rendus. Mathématique
%D 2012
%P 153-156
%V 350
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2012.01.025
%G en
%F CRMATH_2012__350_3-4_153_0
Le Mau Hai; Pham Hoang Hiep; Nguyen Van Phu. Global and local definition of the Monge–Ampère operator on compact Kähler manifolds. Comptes Rendus. Mathématique, Volume 350 (2012) no. 3-4, pp. 153-156. doi : 10.1016/j.crma.2012.01.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.01.025/

[1] P. Åhag; U. Cegrell; R. Czyz; Pham Hoang Hiep Monge–Ampère measures on pluripolar sets, J. Math. Pures Appl., Volume 92 (2009), pp. 613-627

[2] E. Bedford; B.A. Taylor A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40

[3] U. Cegrell Pluricomplex energy, Acta Math., Volume 180 (1998), pp. 187-217

[4] U. Cegrell The general definition of the complex Monge–Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004), pp. 159-179

[5] U. Cegrell A general Dirichlet problem for the complex Monge–Ampère operator, Ann. Polon. Math., Volume 94 (2008), pp. 131-147

[6] U. Cegrell; S. Kołodziej; A. Zeriahi Subextension of plurisubharmonic functions with weak singularities, Math. Z., Volume 250 (2005), pp. 7-22

[7] U. Cegrell; S. Kołodziej; A. Zeriahi Maximal subextensions of plurisubharmonic functions, Ann. Fac. Sci. Toulouse, Math. (6), Volume 20 (2011) no. Special Issue, pp. 101-122

[8] J.-P. Demailly Mesures de Monge–Ampère et mesures pluriharmoniques, Math. Z., Volume 194 (1987), pp. 519-564

[9] J.-P. Demailly Regularization of closed positive currents and intersection theory, J. Alg. Geom., Volume 1 (1992), pp. 361-409

[10] J.-P. Demailly Monger–Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry, Univ. Series in Math., Plenum Press, New York, 1993

[11] J.-P. Demailly, Complex analytic and differential geometry, self-published e-book, 1997.

[12] S. Dinew Uniqueness in E(X,ω), J. Funct. Anal., Volume 256 (2009) no. 7, pp. 2113-2122

[13] V. Guedj; A. Zeriahi Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639

[14] V. Guedj; A. Zeriahi The weighted Monge–Ampère energy of quasi-plurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482

[15] Nguyen Van Khue; Pham Hoang Hiep A comparison principle for the complex Monge–Ampère operator in Cegrellʼs classes and applications, Trans. Amer. Math. Soc., Volume 361 (2009) no. 10, pp. 5539-5554

[16] S. Kołodziej The Monge–Ampère equation, Acta Math., Volume 180 (1998), pp. 69-117

[17] S. Kołodziej The Monge–Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J., Volume 52 (2003), pp. 667-686

[18] S. Kołodziej The complex Monge–Ampère equation and pluripotential theory, Mem. Amer. Math. Soc., Volume 178 (2005)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Subextension of plurisubharmonic functions with bounded Monge–Ampère mass

Urban Cegrell; Ahmed Zeriahi

C. R. Math (2003)


A Note on the approximation of plurisubharmonic functions

Slimane Benelkourchi

C. R. Math (2006)


Extremal cases for the log canonical threshold

Alexander Rashkovskii

C. R. Math (2015)