Unique existence of solutions to porous media equations driven by continuous linear multiplicative space–time rough signals is proven for initial data in . The generation of a continuous, order-preserving random dynamical system (RDS) on and the existence of a “small” random attractor for stochastic porous media equations perturbed by linear multiplicative noise in space and time is obtained. Uniform bounds and uniform space–time continuity of solutions is shown. General noise including fractional Brownian Motion for all Hurst parameters is contained. A pathwise Wong–Zakai result for driving noise given by a continuous semimartingale is obtained.
Lʼexistence et lʼunicité des solutions des équations aux milieux poreux pilotés par des « rough paths », continus, linéaire multiplicatifs et distribués dans lʼespace et le temps sont démontrées pour des conditions initiales dans . On obtient la génération dʼun système dynamique aléatoire continu et monotone dans ainsi que lʼexistence dʼun « petit » attracteur aléatoire pour des équations aux milieux poreux stochastiques perturbés par un bruit linéaire multiplicatif, distribué dans lʼespace et le temps. Des bornes uniformes dans et la continuité uniforme des solutions dans lʼespace et le temps sont démontrées. Le cas dʼun bruit généralisé, y compris le mouvement Brownien fractionnaire pour tous les paramétres de Hurst est contenu. Un résultat trajectoire du type Wong–Zakai pour un bruit mené par une semimartingale continue est obtenu.
Accepted:
Published online:
Benjamin Gess 1
@article{CRMATH_2012__350_5-6_299_0, author = {Benjamin Gess}, title = {Random attractors for stochastic porous media equations perturbed by space{\textendash}time linear multiplicative noise}, journal = {Comptes Rendus. Math\'ematique}, pages = {299--302}, publisher = {Elsevier}, volume = {350}, number = {5-6}, year = {2012}, doi = {10.1016/j.crma.2012.02.004}, language = {en}, }
TY - JOUR AU - Benjamin Gess TI - Random attractors for stochastic porous media equations perturbed by space–time linear multiplicative noise JO - Comptes Rendus. Mathématique PY - 2012 SP - 299 EP - 302 VL - 350 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2012.02.004 LA - en ID - CRMATH_2012__350_5-6_299_0 ER -
Benjamin Gess. Random attractors for stochastic porous media equations perturbed by space–time linear multiplicative noise. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 299-302. doi : 10.1016/j.crma.2012.02.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.02.004/
[1] On a random scaled porous media equation, J. Differential Equations, Volume 251 (2011) no. 9, pp. 2494-2514
[2] Monotone Random Systems Theory and Applications, Lecture Notes in Mathematics, vol. 1779, Springer-Verlag, Berlin, 2002
[3] Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J., Volume 32 (1983) no. 1, pp. 83-118
[4] Random attractors for stochastic porous media equations perturbed by space–time linear multiplicative noise, 2011 | arXiv
[5] The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Mem. Amer. Math. Soc., Volume 196 (2008) no. 917 (pp. vi+105)
[6] On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist., Volume 36 (1965), pp. 1560-1564
Cited by Sources:
☆ A more detailed account of the results presented here can be found in (Gess, 2011 [4]).
Comments - Policy