Let be a transversely orientable codimension one minimal foliation without vanishing cycles of a manifold M and . We show that if the fundamental group of each leaf of has polynomial growth of degree k, then the foliation is without holonomy.
Soit une feuilletage minimal de codimension un sur une variété M et . Supposons que nʼa pas de cycles évanouissants. On démontre que le feuilletage est sans holonomie si le groupe fondamental de toute la feuille de est à croissance polynomiale de degré k.
Accepted:
Published online:
Tomoo Yokoyama 1
@article{CRMATH_2012__350_5-6_285_0, author = {Tomoo Yokoyama}, title = {Codimension one minimal foliations whose leaves have fundamental groups with the same polynomial growth}, journal = {Comptes Rendus. Math\'ematique}, pages = {285--287}, publisher = {Elsevier}, volume = {350}, number = {5-6}, year = {2012}, doi = {10.1016/j.crma.2012.03.008}, language = {en}, }
TY - JOUR AU - Tomoo Yokoyama TI - Codimension one minimal foliations whose leaves have fundamental groups with the same polynomial growth JO - Comptes Rendus. Mathématique PY - 2012 SP - 285 EP - 287 VL - 350 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2012.03.008 LA - en ID - CRMATH_2012__350_5-6_285_0 ER -
Tomoo Yokoyama. Codimension one minimal foliations whose leaves have fundamental groups with the same polynomial growth. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 285-287. doi : 10.1016/j.crma.2012.03.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.008/
[1] Leaves without holonomy, J. London Math. Soc. (2), Volume 16 (1977) no. 3, pp. 548-552
[2] Groups of polynomial growth and expanding maps, Inst. Hautes Etudes Sci. Publ. Math., Volume 53 (1981), pp. 53-73
[3] Introduction to the Geometry of Foliations. Part B. Foliations of Codimension One, Aspects of Mathematics, vol. E3, Friedr. Vieweg & Sohn, Braunschweig, 1983
[4] Topology of foliations, Trudy Moskov. Mat. Obshch., Volume 14 (1965), pp. 248-278
[5] Codimension one minimal foliations and the higher homotopy groups of leaves, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 655-658
[6] Codimension one foliations and the fundamental groups of leaves, Ann. Inst. Fourier, Volume 58 (2008) no. 2, pp. 723-731
Cited by Sources:
Comments - Policy