[Applications of an infinite horizon BSDEʼs to an impulse control problem]
We study an impulse control problem in infinite horizon. To solve this problem, we extend to the infinite horizon case results of double barrier reflected backward stochastic differential equations. The properties of the Snell envelope reduce our problem to the existence of a pair of continuous processes.
Nous considérons un problème de contrôle impulsionnel en horizon infini. Pour le résoudre, nous étendons au cas de lʼhorizon infini des résultats concernant les équations différentielles stochastiques rétrogrades et réfléchies à double barrière. Les propriétés de lʼenveloppe de Snell permettent de ramèner notre problème à lʼexistence dʼun couple de processus continus.
Accepted:
Published online:
Rim Amami 1
@article{CRMATH_2012__350_5-6_267_0, author = {Rim Amami}, title = {Applications des {EDSR} \`a horizon infini \`a un probl\`eme de contr\^ole impulsionnel}, journal = {Comptes Rendus. Math\'ematique}, pages = {267--271}, publisher = {Elsevier}, volume = {350}, number = {5-6}, year = {2012}, doi = {10.1016/j.crma.2012.03.005}, language = {fr}, }
Rim Amami. Applications des EDSR à horizon infini à un problème de contrôle impulsionnel. Comptes Rendus. Mathématique, Volume 350 (2012) no. 5-6, pp. 267-271. doi : 10.1016/j.crma.2012.03.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.005/
[1] Innovation, commutation et contrôle impulsionnel en horizon infini, 2012 | arXiv
[2] Contrôle Impulsionnel et Inéquations Quasi Variationnelles, Dunod, Paris, 1982
[3] Les Aspects Probabilistes du Contrôle Stochastique, Lecture Notes in Mathematics, vol. 876, Springer-Verlag, Berlin, 1981
[4] Reflected solutions of backward SDEʼs, and related obstacle problems for SDEʼs, The Annals of Probability, Volume 25 (1997) no. 2, pp. 702-737
[5] Double barriers reflected backward SDEʼs with continuous coefficients, Pitman Research Notes in Mathematics Series, vol. 364, 1997, pp. 115-128
[6] On the starting and stopping problem: Application in reversible investments, Mathematics of Operations Research, Volume 32 (2007) no. 1, pp. 182-192
[7] Brownian Motion and Stochastic Calculus, Springer, 1991
[8] Adapted Solution of a Backward Stochastic Differential Equation, Elsevier Science Publishers B.V., 1990
Cited by Sources:
Comments - Policy