[Existence dʼune solution faible pour un modèle dʼÉquations Primitives Compressibles]
In this Note, we show a global weak existence result for a two dimensional Compressible Primitive Equations for atmosphere dynamics modeling.
Dans cette Note, on montre un résultat dʼexistence de solutions faibles globale en temps pour un modèle dʼÉquations Primitives Compressibles en dimension deux pour la dynamique de lʼatmosphère.
Accepté le :
Publié le :
Mehmet Ersoy 1, 2, 3 ; Timack Ngom 2, 4
@article{CRMATH_2012__350_7-8_379_0, author = {Mehmet Ersoy and Timack Ngom}, title = {Existence of a global weak solution to {Compressible} {Primitive} {Equations}}, journal = {Comptes Rendus. Math\'ematique}, pages = {379--382}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.04.013}, language = {en}, }
Mehmet Ersoy; Timack Ngom. Existence of a global weak solution to Compressible Primitive Equations. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 379-382. doi : 10.1016/j.crma.2012.04.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.013/
[1] Compressible primitive equations: formal derivation and stability of weak solutions, Nonlinearity, Volume 24 (2011) no. 1, pp. 79-96
[2] Existence of a global solution to one model problem of atmosphere dynamics, Sibirsk. Mat. Zh., Volume 1011 (2005), pp. 1020-1722
[3] Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation, Discrete Contin. Dyn. Syst. Ser. B, Volume 1 (2001) no. 1, pp. 89-102
[4] New formulations for the primitive equations for the atmosphere and applications, Nonlinearity, Volume 5 (1992), pp. 237-288
[5] Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects, Eur. J. Mech. B Fluids, Volume 26 (2007) no. 1, pp. 49-63
[6] Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987
[7] Some mathematical problems in geophysical fluid dynamics, Handbook of Mathematical Fluid Dynamics, North-Holland, 2004
- Rigorous justification of the hydrostatic approximation limit of viscous compressible flows, Physica D: Nonlinear Phenomena, Volume 464 (2024), p. 134195 | DOI:10.1016/j.physd.2024.134195
- Local Existence and Uniqueness of Strong Solution to the Inhomogeneous Primitive Equations with Vacuum, Acta Applicandae Mathematicae, Volume 186 (2023) no. 1 | DOI:10.1007/s10440-023-00580-8
- On the Hydrostatic Approximation of Compressible Anisotropic Navier–Stokes Equations–Rigorous Justification, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 3 | DOI:10.1007/s00021-022-00717-z
- Local Well-Posedness of Strong Solutions to the Three-Dimensional Compressible Primitive Equations, Archive for Rational Mechanics and Analysis, Volume 241 (2021) no. 2, p. 729 | DOI:10.1007/s00205-021-01662-3
- Local Existence and Uniqueness of Strong Solutions to the Two Dimensional Compressible Primitive Equations with Density-Dependent Viscosity, Journal of Mathematical Fluid Mechanics, Volume 23 (2021) no. 3 | DOI:10.1007/s00021-021-00604-z
- Local Existence and Uniqueness of Strong Solutions to the Two Dimensional Nonhomogeneous Incompressible Primitive Equations, Acta Mathematica Scientia, Volume 40 (2020) no. 5, p. 1316 | DOI:10.1007/s10473-020-0510-1
- Zero Mach Number Limit of the Compressible Primitive Equations: Well-Prepared Initial Data, Archive for Rational Mechanics and Analysis, Volume 238 (2020) no. 2, p. 705 | DOI:10.1007/s00205-020-01553-z
- Global existence of weak solutions to 3D compressible primitive equations with degenerate viscosity, Journal of Mathematical Physics, Volume 61 (2020) no. 2 | DOI:10.1063/1.5120088
- Global Existence of Weak Solutions to the Compressible Primitive Equations of Atmospheric Dynamics with Degenerate Viscosities, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 3, p. 1913 | DOI:10.1137/18m1211994
- Uniqueness of the global weak solutions to 2D compressible primitive equations, Journal of Mathematical Analysis and Applications, Volume 461 (2018) no. 2, p. 1653 | DOI:10.1016/j.jmaa.2017.12.035
- Dimension reduction for compressible pipe flows including friction, Asymptotic Analysis, Volume 98 (2016) no. 3, p. 237 | DOI:10.3233/asy-161367
- On the Stability of Weak Solution for Compressible Primitive Equations, Acta Applicandae Mathematicae, Volume 140 (2015) no. 1, p. 133 | DOI:10.1007/s10440-014-9982-0
Cité par 12 documents. Sources : Crossref
Commentaires - Politique