Comptes Rendus
Partial Differential Equations
Existence of a global weak solution to Compressible Primitive Equations
[Existence dʼune solution faible pour un modèle dʼÉquations Primitives Compressibles]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 379-382.

In this Note, we show a global weak existence result for a two dimensional Compressible Primitive Equations for atmosphere dynamics modeling.

Dans cette Note, on montre un résultat dʼexistence de solutions faibles globale en temps pour un modèle dʼÉquations Primitives Compressibles en dimension deux pour la dynamique de lʼatmosphère.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.04.013

Mehmet Ersoy 1, 2, 3 ; Timack Ngom 2, 4

1 Institut de mathématique de Toulon (IMATH), université du Sud Toulon-Var, avenue G. Pompidou, BP 56, 83162 La Valette du Var, France
2 Laboratoire de mathématiques (LAMA), université de Savoie, 73376 Le Bourget du Lac, France
3 Basque Center for Applied Mathematics (BCAM), Bizkaia Technology Park 500, 48160 Derio, Basque Country, Spain
4 Laboratoire dʼanalyse numérique et informatique (LANI), université Gaston Berger de Saint-Louis, UFR SAT, BP 234, Saint-Louis, Senegal
@article{CRMATH_2012__350_7-8_379_0,
     author = {Mehmet Ersoy and Timack Ngom},
     title = {Existence of a global weak solution to {Compressible} {Primitive} {Equations}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {379--382},
     publisher = {Elsevier},
     volume = {350},
     number = {7-8},
     year = {2012},
     doi = {10.1016/j.crma.2012.04.013},
     language = {en},
}
TY  - JOUR
AU  - Mehmet Ersoy
AU  - Timack Ngom
TI  - Existence of a global weak solution to Compressible Primitive Equations
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 379
EP  - 382
VL  - 350
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2012.04.013
LA  - en
ID  - CRMATH_2012__350_7-8_379_0
ER  - 
%0 Journal Article
%A Mehmet Ersoy
%A Timack Ngom
%T Existence of a global weak solution to Compressible Primitive Equations
%J Comptes Rendus. Mathématique
%D 2012
%P 379-382
%V 350
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2012.04.013
%G en
%F CRMATH_2012__350_7-8_379_0
Mehmet Ersoy; Timack Ngom. Existence of a global weak solution to Compressible Primitive Equations. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 379-382. doi : 10.1016/j.crma.2012.04.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.013/

[1] M. Ersoy; T. Ngom; M. Sy Compressible primitive equations: formal derivation and stability of weak solutions, Nonlinearity, Volume 24 (2011) no. 1, pp. 79-96

[2] B.V. Gatapov; A.V. Kazhikhov Existence of a global solution to one model problem of atmosphere dynamics, Sibirsk. Mat. Zh., Volume 1011 (2005), pp. 1020-1722

[3] J.-F. Gerbeau; B. Perthame Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation, Discrete Contin. Dyn. Syst. Ser. B, Volume 1 (2001) no. 1, pp. 89-102

[4] J.L. Lions; R. Temam; S. Wang New formulations for the primitive equations for the atmosphere and applications, Nonlinearity, Volume 5 (1992), pp. 237-288

[5] F. Marche Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects, Eur. J. Mech. B Fluids, Volume 26 (2007) no. 1, pp. 49-63

[6] J. Pedlowski Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987

[7] R. Temam; M. Ziane Some mathematical problems in geophysical fluid dynamics, Handbook of Mathematical Fluid Dynamics, North-Holland, 2004

  • Xin Liu; Edriss S. Titi Rigorous justification of the hydrostatic approximation limit of viscous compressible flows, Physica D: Nonlinear Phenomena, Volume 464 (2024), p. 134195 | DOI:10.1016/j.physd.2024.134195
  • Xiaoling Hu; Kunzhuo Tong; Xiaojing Xu Local Existence and Uniqueness of Strong Solution to the Inhomogeneous Primitive Equations with Vacuum, Acta Applicandae Mathematicae, Volume 186 (2023) no. 1 | DOI:10.1007/s10440-023-00580-8
  • Hongjun Gao; Šárka Nečasová; Tong Tang On the Hydrostatic Approximation of Compressible Anisotropic Navier–Stokes Equations–Rigorous Justification, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 3 | DOI:10.1007/s00021-022-00717-z
  • Xin Liu; Edriss S. Titi Local Well-Posedness of Strong Solutions to the Three-Dimensional Compressible Primitive Equations, Archive for Rational Mechanics and Analysis, Volume 241 (2021) no. 2, p. 729 | DOI:10.1007/s00205-021-01662-3
  • Fengchao Wang Local Existence and Uniqueness of Strong Solutions to the Two Dimensional Compressible Primitive Equations with Density-Dependent Viscosity, Journal of Mathematical Fluid Mechanics, Volume 23 (2021) no. 3 | DOI:10.1007/s00021-021-00604-z
  • Quansen Jiu; Fengchao Wang Local Existence and Uniqueness of Strong Solutions to the Two Dimensional Nonhomogeneous Incompressible Primitive Equations, Acta Mathematica Scientia, Volume 40 (2020) no. 5, p. 1316 | DOI:10.1007/s10473-020-0510-1
  • Xin Liu; Edriss S. Titi Zero Mach Number Limit of the Compressible Primitive Equations: Well-Prepared Initial Data, Archive for Rational Mechanics and Analysis, Volume 238 (2020) no. 2, p. 705 | DOI:10.1007/s00205-020-01553-z
  • Fengchao Wang; Changsheng Dou; Quansen Jiu Global existence of weak solutions to 3D compressible primitive equations with degenerate viscosity, Journal of Mathematical Physics, Volume 61 (2020) no. 2 | DOI:10.1063/1.5120088
  • Xin Liu; Edriss S. Titi Global Existence of Weak Solutions to the Compressible Primitive Equations of Atmospheric Dynamics with Degenerate Viscosities, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 3, p. 1913 | DOI:10.1137/18m1211994
  • Quansen Jiu; Mingjie Li; Fengchao Wang Uniqueness of the global weak solutions to 2D compressible primitive equations, Journal of Mathematical Analysis and Applications, Volume 461 (2018) no. 2, p. 1653 | DOI:10.1016/j.jmaa.2017.12.035
  • M. Ersoy Dimension reduction for compressible pipe flows including friction, Asymptotic Analysis, Volume 98 (2016) no. 3, p. 237 | DOI:10.3233/asy-161367
  • Tong Tang; Hongjun Gao On the Stability of Weak Solution for Compressible Primitive Equations, Acta Applicandae Mathematicae, Volume 140 (2015) no. 1, p. 133 | DOI:10.1007/s10440-014-9982-0

Cité par 12 documents. Sources : Crossref

Commentaires - Politique