The S-spectrum has been introduced for the definition of the S-functional calculus that includes both the quaternionic functional calculus and a calculus for n-tuples of nonnecessarily commuting operators. The notion of right spectrum for right linear quaternionic operators has been widely used in the literature, especially in the context of quaternionic quantum mechanics. Moreover, several results in linear algebra, like the spectral theorem for quaternionic matrices, involve the right spectrum. In this Note we prove that the two notions of S-spectrum and of right spectrum coincide.
La notion de S-spectre a été introduite pour donner une définition de calcul formel utilisable pour des opérateurs linéaires quaternioniques et pour des n-uples dʼopérateurs non nécessairement commutatifs. La notion de spectre à droite pour des opérateurs linéaires a été largement utilisée dans la littérature, particulièrement dans le cadre de la mécanique quantique. Par la suite, on a établi que de nombreux résultats dʼalgèbre linéaire, comme le théorème spectral pour les matrices quaternioniques, sont reliés au spectre à droite. Dans cette Note on démontre que les deux notions de S-spectre et de spectre à droite coïncident.
Accepted:
Published online:
Fabrizio Colombo 1; Irene Sabadini 1
@article{CRMATH_2012__350_7-8_399_0, author = {Fabrizio Colombo and Irene Sabadini}, title = {On some notions of spectra for quaternionic operators and for \protect\emph{n}-tuples of operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {399--402}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.03.017}, language = {en}, }
TY - JOUR AU - Fabrizio Colombo AU - Irene Sabadini TI - On some notions of spectra for quaternionic operators and for n-tuples of operators JO - Comptes Rendus. Mathématique PY - 2012 SP - 399 EP - 402 VL - 350 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2012.03.017 LA - en ID - CRMATH_2012__350_7-8_399_0 ER -
Fabrizio Colombo; Irene Sabadini. On some notions of spectra for quaternionic operators and for n-tuples of operators. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 399-402. doi : 10.1016/j.crma.2012.03.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.017/
[1] Quaternionic Quantum Field Theory, Oxford University Press, 1995
[2] The -spectrum and the -functional calculus, Proc. Roy. Soc. Edinburgh Sect. A, Volume 142 (2012), pp. 1-22
[3] Noncommutative Functional Calculus. Theory and Applications of Slice Hyperholomorphic Functions, Progress in Mathematics, vol. 289, Birkhäuser/Springer Basel AG, Basel, 2011 (vi+221 pp)
[4] Right eigenvalue equation in quaternionic quantum mechanics, J. Phys. A, Volume 33 (2000), pp. 2971-2995
[5] The spectral theorem in quaternions, Linear Algebra Appl., Volume 371 (2003), pp. 75-102
[6] Quaternions and matrices of quaternions, Linear Algebra Appl., Volume 251 (1997), pp. 21-57
Cited by Sources:
Comments - Policy