We prove that the Cowling–Haagerup constant of a reduced free product of weakly amenable discrete quantum groups with Cowling–Haagerup constant equal to 1 is again equal to 1.
Nous prouvons que la constante de Cowling–Haagerup dʼun produit libre réduit de groupes quantiques discrets faiblement moyennables de constante de Cowling–Haagerup égale à 1 est encore égale à 1.
Accepted:
Published online:
Amaury Freslon 1
@article{CRMATH_2012__350_7-8_403_0, author = {Amaury Freslon}, title = {A {Note} on weak amenability for free products of discrete quantum groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {403--406}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.04.015}, language = {en}, }
Amaury Freslon. A Note on weak amenability for free products of discrete quantum groups. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 403-406. doi : 10.1016/j.crma.2012.04.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.015/
[1] Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres, Ann. Sci. École Norm. Sup., Volume 26 (1993) no. 4, pp. 425-488
[2] Herz–Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Unione Mat. Ital. A (6), Volume 3 (1984) no. 2, pp. 297-302
[3] Multipliers of locally compact quantum groups via Hilbert C*-modules, 2011 (arxiv preprint) | arXiv
[4] A note on weak amenability for reduced free products of discrete quantum groups, 2011 (arxiv preprint) | arXiv
[5] Approximation properties for Kac algebras, Indiana Univ. Math. J., Volume 48 (1999) no. 2, pp. 469-535
[6] Weak amenability of hyperbolic groups, Groups Geom. Dyn., Volume 2 (2008), pp. 271-280
[7] On a class of factors with at most one Cartan subalgebra, Ann. of Math., Volume 172 (2010) no. 2, pp. 713-749
[8] On a class of factors with at most one Cartan subalgebra II, Amer. J. Math., Volume 132 (2010), pp. 841-866
[9] Khintchine type inequalities for reduced free products and applications, J. Reine Angew. Math., Volume 599 (2006), pp. 27-59
[10] Amenable discrete quantum groups, J. Math. Soc. Japan, Volume 58 (2006) no. 4, pp. 949-964
[11] Free products of compact quantum groups, Comm. Math. Phys., Volume 167 (1995) no. 3, pp. 671-692
[12] Compact quantum groups, Les Houches, 1995 (1998), pp. 845-884
Cited by Sources:
Comments - Policy