We construct a Littlewood–Paley decomposition associated to a Rockland operator on graded Lie groups, which allows us to deduce refined Gagliardo–Nirenberg, Sobolev and Hardy inequalities.
On construit une décomposition de Littlewood–Paley associée à un opérateur de Rockland sur les groupes de Lie gradués, qui permet de déduire des inégalités précisées de type Gagliardo–Nirenberg, Sobolev et Hardy.
Accepted:
Published online:
Hajer Bahouri 1; Clotilde Fermanian-Kammerer 1; Isabelle Gallagher 2
@article{CRMATH_2012__350_7-8_393_0, author = {Hajer Bahouri and Clotilde Fermanian-Kammerer and Isabelle Gallagher}, title = {Refined inequalities on graded {Lie} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {393--397}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.04.014}, language = {en}, }
TY - JOUR AU - Hajer Bahouri AU - Clotilde Fermanian-Kammerer AU - Isabelle Gallagher TI - Refined inequalities on graded Lie groups JO - Comptes Rendus. Mathématique PY - 2012 SP - 393 EP - 397 VL - 350 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2012.04.014 LA - en ID - CRMATH_2012__350_7-8_393_0 ER -
Hajer Bahouri; Clotilde Fermanian-Kammerer; Isabelle Gallagher. Refined inequalities on graded Lie groups. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 393-397. doi : 10.1016/j.crma.2012.04.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.014/
[1] On positive Rockland operators, Colloq. Math., Volume 67 (1994) no. 2, pp. 197-216
[2] Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, Springer, 2011
[3] Refined Hardy inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 5 (2006), pp. 375-391
[4] Refined Sobolev inequalities in Lorentz spaces, J. Fourier Anal. App., Volume 17 (2011), pp. 662-673
[5] Paraproduit sur le groupe de Heisenberg et applications, Rev. Mat. Iberoamericana, Volume 17 (2001), pp. 69-105
[6] Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg, J. Anal. Math., Volume 82 (2000), pp. 93-118
[7] Interpolation of Operators, Academic Press, 1988
[8] Improved Sobolev inequalities and Muckenhoupt weights on stratified Lie groups, J. Math. Anal. Appl., Volume 377 (2011) no. 2, pp. 695-709
[9] Hardy Spaces on Homogeneous Groups, Mathematical Notes, vol. 28, Princeton University Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1982
[10] Littlewood–Paley decompositions and Besov spaces on Lie groups of polynomial growth, Math. Nachr., Volume 279 (2006) no. 9–10, pp. 1028-1040
[11] P. Gérard, Y. Meyer, F. Oru, Inégalités de Sobolev précisées, in: Séminaire X-EDP, École Polytechnique, 1996.
[12] A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math., Volume 78 (1984), pp. 253-266
[13] Convolution operators on spaces, Duke Math. J., Volume 30 (1963), pp. 129-142
[14] Lorentz spaces and Lie groups, J. Approx. Theory, Volume 84 (1996) no. 3, pp. 274-289
Cited by Sources:
Comments - Policy