Comptes Rendus
Differential Geometry
Lie geometry of linear Weingarten surfaces
Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 413-416.

We show how linear Weingarten surfaces appear as special Ω-surfaces and give a characterization of those linear Weingarten surfaces that allow a Weierstrass type representation.

Nous montrons que les surfaces de Weingarten linéaires peuvent être présentées comme des surfaces Ω spéciales. Ensuite, nous discutons une caractérisation des surfaces de Weingarten linéaires de type Bryant.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.03.018

Francis E. Burstall 1; Udo Hertrich-Jeromin 1; Wayne Rossman 2

1 Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
2 Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
@article{CRMATH_2012__350_7-8_413_0,
     author = {Francis E. Burstall and Udo Hertrich-Jeromin and Wayne Rossman},
     title = {Lie geometry of linear {Weingarten} surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {413--416},
     publisher = {Elsevier},
     volume = {350},
     number = {7-8},
     year = {2012},
     doi = {10.1016/j.crma.2012.03.018},
     language = {en},
}
TY  - JOUR
AU  - Francis E. Burstall
AU  - Udo Hertrich-Jeromin
AU  - Wayne Rossman
TI  - Lie geometry of linear Weingarten surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 413
EP  - 416
VL  - 350
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2012.03.018
LA  - en
ID  - CRMATH_2012__350_7-8_413_0
ER  - 
%0 Journal Article
%A Francis E. Burstall
%A Udo Hertrich-Jeromin
%A Wayne Rossman
%T Lie geometry of linear Weingarten surfaces
%J Comptes Rendus. Mathématique
%D 2012
%P 413-416
%V 350
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2012.03.018
%G en
%F CRMATH_2012__350_7-8_413_0
Francis E. Burstall; Udo Hertrich-Jeromin; Wayne Rossman. Lie geometry of linear Weingarten surfaces. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 413-416. doi : 10.1016/j.crma.2012.03.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.018/

[1] F. Burstall; U. Hertrich-Jeromin; W. Rossman Lie geometry of flat fronts in hyperbolic space, C. R. Acad. Sci. Paris, Sér. I, Volume 348 (2010), pp. 661-664

[2] P. Calapso Alcune superficie di Guichard e le relative trasformazioni, Ann. Mat., Volume 11 (1904), pp. 201-251

[3] A. Demoulin Sur les surfaces R et les surfaces Ω, C. R. Acad. Sci. Paris, Volume 153 (1911), pp. 590-593 (705–707)

[4] A. Demoulin Sur les surfaces Ω, C. R. Acad. Sci. Paris, Volume 153 (1911), pp. 927-929

[5] O. Kobayashi Maximal surfaces in the 3-dimensional Minkowski space L3, Tokyo J. Math., Volume 6 (1983), pp. 297-309

[6] M. Kokubu; M. Umehara Orientability of linear Weingarten surfaces, spacelike cmc-1 surfaces and maximal surfaces, Math. Nachr., Volume 284 (2011), pp. 1903-1918

[7] E. Musso; L. Nicolodi Deformation and applicability of surfaces in Lie sphere geometry, Tôhoku Math. J., Volume 58 (2006), pp. 161-187

[8] A. Szereszewski L-isothermic and L-minimal surfaces, J. Phys. A: Math. Theor., Volume 42 (2009), p. 115203

Cited by Sources:

Comments - Policy