[La géométrie de Lie des surfaces de Weingarten linéaires]
Nous montrons que les surfaces de Weingarten linéaires peuvent être présentées comme des surfaces Ω spéciales. Ensuite, nous discutons une caractérisation des surfaces de Weingarten linéaires de type Bryant.
We show how linear Weingarten surfaces appear as special Ω-surfaces and give a characterization of those linear Weingarten surfaces that allow a Weierstrass type representation.
Accepté le :
Publié le :
Francis E. Burstall 1 ; Udo Hertrich-Jeromin 1 ; Wayne Rossman 2
@article{CRMATH_2012__350_7-8_413_0, author = {Francis E. Burstall and Udo Hertrich-Jeromin and Wayne Rossman}, title = {Lie geometry of linear {Weingarten} surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {413--416}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.03.018}, language = {en}, }
Francis E. Burstall; Udo Hertrich-Jeromin; Wayne Rossman. Lie geometry of linear Weingarten surfaces. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 413-416. doi : 10.1016/j.crma.2012.03.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.018/
[1] Lie geometry of flat fronts in hyperbolic space, C. R. Acad. Sci. Paris, Sér. I, Volume 348 (2010), pp. 661-664
[2] Alcune superficie di Guichard e le relative trasformazioni, Ann. Mat., Volume 11 (1904), pp. 201-251
[3] Sur les surfaces R et les surfaces Ω, C. R. Acad. Sci. Paris, Volume 153 (1911), pp. 590-593 (705–707)
[4] Sur les surfaces Ω, C. R. Acad. Sci. Paris, Volume 153 (1911), pp. 927-929
[5] Maximal surfaces in the 3-dimensional Minkowski space
[6] Orientability of linear Weingarten surfaces, spacelike cmc-1 surfaces and maximal surfaces, Math. Nachr., Volume 284 (2011), pp. 1903-1918
[7] Deformation and applicability of surfaces in Lie sphere geometry, Tôhoku Math. J., Volume 58 (2006), pp. 161-187
[8] L-isothermic and L-minimal surfaces, J. Phys. A: Math. Theor., Volume 42 (2009), p. 115203
- Channel linear Weingarten surfaces in space forms, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, Volume 64 (2023) no. 4, p. 969 | DOI:10.1007/s13366-022-00664-w
- Weierstrass-type representations, Geometriae Dedicata, Volume 204 (2020) no. 1, p. 299 | DOI:10.1007/s10711-019-00456-y
- Polynomial conserved quantities of Lie applicable surfaces, manuscripta mathematica, Volume 158 (2019) no. 3-4, p. 505 | DOI:10.1007/s00229-018-1033-0
- Channel surfaces in Lie sphere geometry, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, Volume 59 (2018) no. 4, p. 779 | DOI:10.1007/s13366-018-0394-6
- Isothermic triangulated surfaces, Mathematische Annalen, Volume 368 (2017) no. 1-2, p. 165 | DOI:10.1007/s00208-016-1424-z
- On Bäcklund and Ribaucour transformations for surfaces with constant negative curvature, Geometriae Dedicata, Volume 181 (2016) no. 1, p. 83 | DOI:10.1007/s10711-015-0113-5
Cité par 6 documents. Sources : Crossref
Commentaires - Politique