We show how linear Weingarten surfaces appear as special Ω-surfaces and give a characterization of those linear Weingarten surfaces that allow a Weierstrass type representation.
Nous montrons que les surfaces de Weingarten linéaires peuvent être présentées comme des surfaces Ω spéciales. Ensuite, nous discutons une caractérisation des surfaces de Weingarten linéaires de type Bryant.
Accepted:
Published online:
Francis E. Burstall 1; Udo Hertrich-Jeromin 1; Wayne Rossman 2
@article{CRMATH_2012__350_7-8_413_0, author = {Francis E. Burstall and Udo Hertrich-Jeromin and Wayne Rossman}, title = {Lie geometry of linear {Weingarten} surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {413--416}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.03.018}, language = {en}, }
Francis E. Burstall; Udo Hertrich-Jeromin; Wayne Rossman. Lie geometry of linear Weingarten surfaces. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 413-416. doi : 10.1016/j.crma.2012.03.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.018/
[1] Lie geometry of flat fronts in hyperbolic space, C. R. Acad. Sci. Paris, Sér. I, Volume 348 (2010), pp. 661-664
[2] Alcune superficie di Guichard e le relative trasformazioni, Ann. Mat., Volume 11 (1904), pp. 201-251
[3] Sur les surfaces R et les surfaces Ω, C. R. Acad. Sci. Paris, Volume 153 (1911), pp. 590-593 (705–707)
[4] Sur les surfaces Ω, C. R. Acad. Sci. Paris, Volume 153 (1911), pp. 927-929
[5] Maximal surfaces in the 3-dimensional Minkowski space , Tokyo J. Math., Volume 6 (1983), pp. 297-309
[6] Orientability of linear Weingarten surfaces, spacelike cmc-1 surfaces and maximal surfaces, Math. Nachr., Volume 284 (2011), pp. 1903-1918
[7] Deformation and applicability of surfaces in Lie sphere geometry, Tôhoku Math. J., Volume 58 (2006), pp. 161-187
[8] L-isothermic and L-minimal surfaces, J. Phys. A: Math. Theor., Volume 42 (2009), p. 115203
Cited by Sources:
Comments - Policy