[Examples of coherent sheaves with no resolution by locally free sheaves in dimension 3]
In 1982, Schuster proved that for any compact complex surface X, every coherent sheaf on X has global resolutions
En 1982, Schuster a prouvé que pour toutes les surfaces complexes compactes lisses, tous les faisceaux cohérents sur X admettent des résolutions
Accepted:
Published online:
Victor Vuletescu 1, 2
@article{CRMATH_2012__350_7-8_411_0, author = {Victor Vuletescu}, title = {Exemples de faisceaux coh\'erents sans r\'esolution localement libre en dimension 3}, journal = {Comptes Rendus. Math\'ematique}, pages = {411--412}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.03.020}, language = {fr}, }
Victor Vuletescu. Exemples de faisceaux cohérents sans résolution localement libre en dimension 3. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 411-412. doi : 10.1016/j.crma.2012.03.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.03.020/
[1] Sur lʼexistence des fibrés vectoriels holomorphes sur les surfaces non-algèbriques, J. Reine Angew. Math., Volume 378 (1987), pp. 1-31
[2] Espaces fibrés kählériens compacts, C. R. Acad. Sci. Paris, Ser. I, Volume 238 (1954), pp. 2281-2283
[3] The Neron–Severi group for nonalgebraic surfaces I. Elliptic bundle case, Manuscripta Math., Volume 79 (1993) no. 2, pp. 187-195
[4] Remarks on torus principal bundles, J. Math. Kyoto Univ. (JMKYAZ), Volume 33 (1993) no. 1, pp. 227-259
[5] Locally free resolutions of coherent sheaves on surfaces, J. Reine Angew. Math., Volume 337 (1982), pp. 159-165
[6] A counterexample to the Hodge conjecture extended to Kähler varieties, Int. Math. Res. Not., Volume 20 (2002), pp. 1057-1075
Cited by Sources:
Comments - Policy