Given self-adjoint operators it is said whenever for some unitary operator U. We show that if and only if for any increasing operator convex function f, any operator monotone function g and any positive number r. We present some sufficient conditions under which if , then . Finally we prove that if for all , then .
Soient des opérateurs auto-adjoints donnés, on dit que si , où U est un opérateur unitaire. On montre que si et seulement si pour toute fonction dʼopérateurs f, convexe et croissante, toute fonction dʼopérateurs g, monotone et tout nombre r positif. On donne des conditions nécessaires et suffisantes pour que implique . Enfin on montre que si pour tout alors .
Accepted:
Published online:
M.S. Moslehian 1; S.M.S. Nabavi Sales 1; H. Najafi 1
@article{CRMATH_2012__350_7-8_407_0, author = {M.S. Moslehian and S.M.S. Nabavi Sales and H. Najafi}, title = {On the binary relation $ {\ensuremath{\leqslant}}_{u}$ on self-adjoint {Hilbert} space operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {407--410}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.04.004}, language = {en}, }
TY - JOUR AU - M.S. Moslehian AU - S.M.S. Nabavi Sales AU - H. Najafi TI - On the binary relation $ {⩽}_{u}$ on self-adjoint Hilbert space operators JO - Comptes Rendus. Mathématique PY - 2012 SP - 407 EP - 410 VL - 350 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2012.04.004 LA - en ID - CRMATH_2012__350_7-8_407_0 ER -
M.S. Moslehian; S.M.S. Nabavi Sales; H. Najafi. On the binary relation $ {⩽}_{u}$ on self-adjoint Hilbert space operators. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 407-410. doi : 10.1016/j.crma.2012.04.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.004/
[1] Matrix Analysis, Springer, New York, 1997
[2] On the operator equation and related topics, Acta Sci. Math. (Szeged), Volume 30 (1969), pp. 19-32
[3] The operator inequality , Proc. Amer. Math. Soc., Volume 109 (1990) no. 3, pp. 697-698
[4] Invitation to Linear Operators, Taylor and Francis, London, New York, 2001
[5] Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, New York, 1969
[6] On some trace inequality, Proc. Center Math. Anal. Austral. Nat. Univ., Volume 29 (1992), pp. 129-134
[7] Some conditions implying normality of operators, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 251-254
[8] Around operator monotone functions, Integral Equations Operator Theory, Volume 71 (2011) no. 4, pp. 575-582
[9] A condition under which follows from , Proc. Amer. Math. Soc., Volume 135 (2007) no. 5, pp. 1399-1403
[10] The selfadjoint operators of a Von Neumann algebra form a conditionally complete lattice, Proc. Amer. Math. Soc., Volume 28 (1971) no. 2, pp. 537-544
[11] Operator monotone functions which are defined implicitly and operator inequalities, J. Funct. Anal., Volume 175 (2000) no. 2, pp. 330-347
Cited by Sources:
Comments - Policy