Comptes Rendus
Probability Theory/Statistics
On L2-structure of bilinear models on Zd
Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 427-432.

One-dimensionally indexed bilinear (BL) models are widely used for modeling non-Gaussian dataset. Extending BL models to multidimensionally indexed (spatial) (SBL) one yields a novel class of models which are capable of taking into account the non-Gaussianity character and spatiality behavior. Hence, the main contribution here is to study the L2-structure of some SBL models which play an important role in spatial statistical analysis. So, we establish necessary and sufficient conditions for the existence of regular second order stationary and ergodic solutions in terms of its transfer functions. As a consequence, we observe that the second order structure is similar to a weak ARMA field, and that the variance of the best linear prediction error is always greater than the one obtained from an SBL model.

Les modèles bilinéaires (BL) classiques sont largement utilisés pour la modélisation des données non gaussiennes. Cependant, lʼextension de ces modèles au cas spatial (SBL) donne une nouvelle classe de modèles susceptibles de prendre en considération la non gaussianité et le comportement spatial. Le but principal de cette Note consiste à étudier la structure L2 de certains modèles SBL qui jouent un rôle très important dans lʼanalyse statistique spatiale. Nous établissons des conditions nécessaires et suffisantes pour lʼexistence de solutions stationnaires aux seconds ordres, réguliers et ergodiques basées sur les fonctions de transferts. En utilisant la représentation ARMA spatiale, on montre que la variance de lʼerreur de prédiction linéaire est toujours plus grande que celle obtenue par SBL.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.04.002

Abdelouahab Bibi 1; Karima Kimouche 1

1 Département de mathematiques, université Mentouri-Constantine, 25000 Constantine, Algeria
@article{CRMATH_2012__350_7-8_427_0,
     author = {Abdelouahab Bibi and Karima Kimouche},
     title = {On $ {\mathbb{L}}_{2}$-structure of bilinear models on $ {\mathbb{Z}}^{d}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {427--432},
     publisher = {Elsevier},
     volume = {350},
     number = {7-8},
     year = {2012},
     doi = {10.1016/j.crma.2012.04.002},
     language = {en},
}
TY  - JOUR
AU  - Abdelouahab Bibi
AU  - Karima Kimouche
TI  - On $ {\mathbb{L}}_{2}$-structure of bilinear models on $ {\mathbb{Z}}^{d}$
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 427
EP  - 432
VL  - 350
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2012.04.002
LA  - en
ID  - CRMATH_2012__350_7-8_427_0
ER  - 
%0 Journal Article
%A Abdelouahab Bibi
%A Karima Kimouche
%T On $ {\mathbb{L}}_{2}$-structure of bilinear models on $ {\mathbb{Z}}^{d}$
%J Comptes Rendus. Mathématique
%D 2012
%P 427-432
%V 350
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2012.04.002
%G en
%F CRMATH_2012__350_7-8_427_0
Abdelouahab Bibi; Karima Kimouche. On $ {\mathbb{L}}_{2}$-structure of bilinear models on $ {\mathbb{Z}}^{d}$. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 427-432. doi : 10.1016/j.crma.2012.04.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.002/

[1] M. Amirmazlaghani, H. Amindavar, Image denoising using two-dimensional GARCH model, in: Systems, Signals and Image Processing, 2007, pp. 397–400.

[2] A. Bibi On the covariance structure of time-varying bilinear models, Stoch. Anal. Appl., Volume 21 (2003), pp. 25-60

[3] P. Doukhan; L. Truquet A fixed point approach to model random fields, ALEA, Volume 3 (2007), pp. 111-132

[4] C. Gaetan; X. Guyon Spatial Statistics and Modeling, Springer, 2010

[5] L. Giraitis; D. Surgailis ARCH-type bilinear models with double long memory, Stochastic Process. Appl., Volume 100 (2002), pp. 275-300

[6] P. Major Multiple Viener–Itô Integrals, Lecture Notes in Mathematics, vol. 849, Springer, 1981

[7] A. Mokkadem Sur un modèle autorégressif non linéaire, ergodicité et ergodicité géométrique, JSTA, Volume 8 (1987), pp. 195-204

[8] G. Terdik; T. Subba Rao On Wiener–Itô representation and the best linear predictions for bilinear time series, J. Appl. Probab., Volume 26 (1989), pp. 274-286

[9] Hai-Bin Wang; Bo-Cheng Wei Separable lower triangular bilinear model, J. Appl. Probab., Volume 41 (2004), pp. 221-235

[10] Q. Yao; P.J. Brockwell Gaussian maximum likelihood estimation for ARMA models II: Spatial processes, Bernoulli, Volume 12 (2006), pp. 403-429

Cited by Sources:

Comments - Policy