Comptes Rendus
Partial Differential Equations
Singular quasilinear elliptic equations and Hölder regularity
Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 383-388.

We prove the Hölder regularity (Theorem 2.1) for weak solutions to singular quasilinear elliptic equations whose prototype is

{Δpu=K(x)uδ+g(x)in Ω;u|Ω=0,u>0in Ω,(P)
where Ω is an open bounded domain with smooth boundary, 1<p<, δ>0, KLloc(Ω) satisfies 0K(x)constdist(x,Ω)ω for a.e. xΩ, 0<ω<1+(1δ)(11p), and 0gL(Ω). Theorem 2.1 together with the Schauder fixed point theorem can be used to obtain the existence of weak solutions to the singular quasilinear elliptic system (PS) described in the Introduction.

Nous démontrons la régularité höldérienne (Théorème 2.1) des solutions faibles des équations quasi-linéaires elliptiques singulières de la forme suivante :

{Δpu=K(x)uδ+g(x)in Ω;u|Ω=0,u>0in Ω,(P)
Ω est un ouvert borné régulier, 1<p<, δ>0, KLloc(Ω) satisfait 0K(x)constdist(x,Ω)ω pour p.p. xΩ, 0<ω<1+(1δ)(11p) et 0gL(Ω). Théorème 2.1 combiné avec le théorème du point fixe de Schauder permet de démontrer lʼexistence de solutions faibles de systèmes elliptiques quasi-linéaires singuliers de la forme (PS) (voir Introduction).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.04.007

Jacques Giacomoni 1; Ian Schindler 2; Peter Takáč 3

1 Laboratoire de mathématiques et de leurs applications - UMR CNRS 5142, bâtiment IPRA, université de Pau et des Pays de lʼAdour, avenue de lʼuniversité, BP 1155, 64013 Pau, France
2 MIP-CEREMATH / bâtiment C, manufacture des tabacs, allée de Brienne 21, 31000 Toulouse, France
3 Institut für Mathematik, Universität Rostock, Ulmenstraße 69, Haus 3, 18055 Rostock, Germany
@article{CRMATH_2012__350_7-8_383_0,
     author = {Jacques Giacomoni and Ian Schindler and Peter Tak\'a\v{c}},
     title = {Singular quasilinear elliptic equations and {H\"older} regularity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {383--388},
     publisher = {Elsevier},
     volume = {350},
     number = {7-8},
     year = {2012},
     doi = {10.1016/j.crma.2012.04.007},
     language = {en},
}
TY  - JOUR
AU  - Jacques Giacomoni
AU  - Ian Schindler
AU  - Peter Takáč
TI  - Singular quasilinear elliptic equations and Hölder regularity
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 383
EP  - 388
VL  - 350
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2012.04.007
LA  - en
ID  - CRMATH_2012__350_7-8_383_0
ER  - 
%0 Journal Article
%A Jacques Giacomoni
%A Ian Schindler
%A Peter Takáč
%T Singular quasilinear elliptic equations and Hölder regularity
%J Comptes Rendus. Mathématique
%D 2012
%P 383-388
%V 350
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2012.04.007
%G en
%F CRMATH_2012__350_7-8_383_0
Jacques Giacomoni; Ian Schindler; Peter Takáč. Singular quasilinear elliptic equations and Hölder regularity. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 383-388. doi : 10.1016/j.crma.2012.04.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.007/

[1] H. Brézis; L. Nirenberg Minima locaux relatifs à C1 et H1, C. R. Acad. Sci. Paris, Ser. I, Volume 317 (1993), pp. 465-472

[2] E. DiBenedetto C1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., Volume 7 (1983) no. 8, pp. 827-850

[3] J. Giacomoni; I. Schindler; P. Takáč Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa, Ser. V, Volume 6 (2007) no. 1, pp. 117-158

[4] M. Giaquinta Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1983

[5] A. Gierer; H. Meinhardt A theory of biological pattern formation, Kybernetik, Volume 12 (1972), pp. 30-39

[6] Ch. Gui; F.H. Lin Regularity of an elliptic problem with a singular nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, Volume 123 (1993) no. 6, pp. 1021-1029

[7] G. Lieberman Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., Volume 12 (1988) no. 11, pp. 1203-1219

[8] P. Tolksdorf Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, Volume 51 (1984), pp. 126-150

[9] J.L. Vázquez A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., Volume 12 (1984) no. 3, pp. 191-202

Cited by Sources:

Comments - Policy