[Régularité höldérienne pour des équations quasi-linéaires elliptiques singulières]
Nous démontrons la régularité höldérienne (Théorème 2.1) des solutions faibles des équations quasi-linéaires elliptiques singulières de la forme suivante :
(P) |
We prove the Hölder regularity (Theorem 2.1) for weak solutions to singular quasilinear elliptic equations whose prototype is
(P) |
Accepté le :
Publié le :
Jacques Giacomoni 1 ; Ian Schindler 2 ; Peter Takáč 3
@article{CRMATH_2012__350_7-8_383_0, author = {Jacques Giacomoni and Ian Schindler and Peter Tak\'a\v{c}}, title = {Singular quasilinear elliptic equations and {H\"older} regularity}, journal = {Comptes Rendus. Math\'ematique}, pages = {383--388}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.04.007}, language = {en}, }
TY - JOUR AU - Jacques Giacomoni AU - Ian Schindler AU - Peter Takáč TI - Singular quasilinear elliptic equations and Hölder regularity JO - Comptes Rendus. Mathématique PY - 2012 SP - 383 EP - 388 VL - 350 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2012.04.007 LA - en ID - CRMATH_2012__350_7-8_383_0 ER -
Jacques Giacomoni; Ian Schindler; Peter Takáč. Singular quasilinear elliptic equations and Hölder regularity. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 383-388. doi : 10.1016/j.crma.2012.04.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.007/
[1] Minima locaux relatifs à
[2]
[3] Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa, Ser. V, Volume 6 (2007) no. 1, pp. 117-158
[4] Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1983
[5] A theory of biological pattern formation, Kybernetik, Volume 12 (1972), pp. 30-39
[6] Regularity of an elliptic problem with a singular nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, Volume 123 (1993) no. 6, pp. 1021-1029
[7] Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., Volume 12 (1988) no. 11, pp. 1203-1219
[8] Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, Volume 51 (1984), pp. 126-150
[9] A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., Volume 12 (1984) no. 3, pp. 191-202
- The Cheeger constant as limit of Sobolev-type constants, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 203 (2024) no. 4, pp. 1553-1567 | DOI:10.1007/s10231-023-01413-z | Zbl:7902629
- Existence of multiple solution for a singular
-Laplacian problem, Complex Analysis and Operator Theory, Volume 18 (2024) no. 2, p. 20 (Id/No 26) | DOI:10.1007/s11785-023-01474-1 | Zbl:7797437 - Singular doubly nonlocal elliptic problems with Choquard type critical growth nonlinearities, The Journal of Geometric Analysis, Volume 31 (2021) no. 5, pp. 4492-4530 | DOI:10.1007/s12220-020-00441-y | Zbl:1477.49022
- On Dirichlet problem for fractional
-Laplacian with singular non-linearity, Advances in Nonlinear Analysis, Volume 8 (2019), pp. 52-72 | DOI:10.1515/anona-2016-0100 | Zbl:1418.35365 - Existence of solutions for a system involving the
-Laplacian operator in a bounded domain, Rostocker Mathematisches Kolloquium, Volume 72 (2019), pp. 11-33 | Zbl:1466.35222 - On a singular minimizing problem, Journal d'Analyse Mathématique, Volume 135 (2018) no. 2, pp. 575-598 | DOI:10.1007/s11854-018-0040-0 | Zbl:1404.35138
- Fractional Sobolev inequalities associated with singular problems, Mathematische Nachrichten, Volume 291 (2018) no. 11-12, pp. 1666-1685 | DOI:10.1002/mana.201700302 | Zbl:1439.35012
- Positive solutions for nonlinear Choquard equation with singular nonlinearity, Complex Variables and Elliptic Equations, Volume 62 (2017) no. 8, pp. 1044-1071 | DOI:10.1080/17476933.2016.1260559 | Zbl:1368.35275
- , Dynamical Systems and Differential Equations, AIMS Proceedings 2015 Proceedings of the 10th AIMS International Conference (Madrid, Spain) (2015), p. 142 | DOI:10.3934/proc.2015.0142
Cité par 9 documents. Sources : Crossref, zbMATH
Commentaires - Politique