We prove the Hölder regularity (Theorem 2.1) for weak solutions to singular quasilinear elliptic equations whose prototype is
(P) |
Nous démontrons la régularité höldérienne (Théorème 2.1) des solutions faibles des équations quasi-linéaires elliptiques singulières de la forme suivante :
(P) |
Accepted:
Published online:
Jacques Giacomoni 1; Ian Schindler 2; Peter Takáč 3
@article{CRMATH_2012__350_7-8_383_0, author = {Jacques Giacomoni and Ian Schindler and Peter Tak\'a\v{c}}, title = {Singular quasilinear elliptic equations and {H\"older} regularity}, journal = {Comptes Rendus. Math\'ematique}, pages = {383--388}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.04.007}, language = {en}, }
TY - JOUR AU - Jacques Giacomoni AU - Ian Schindler AU - Peter Takáč TI - Singular quasilinear elliptic equations and Hölder regularity JO - Comptes Rendus. Mathématique PY - 2012 SP - 383 EP - 388 VL - 350 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2012.04.007 LA - en ID - CRMATH_2012__350_7-8_383_0 ER -
Jacques Giacomoni; Ian Schindler; Peter Takáč. Singular quasilinear elliptic equations and Hölder regularity. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 383-388. doi : 10.1016/j.crma.2012.04.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.007/
[1] Minima locaux relatifs à et , C. R. Acad. Sci. Paris, Ser. I, Volume 317 (1993), pp. 465-472
[2] local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., Volume 7 (1983) no. 8, pp. 827-850
[3] Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa, Ser. V, Volume 6 (2007) no. 1, pp. 117-158
[4] Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1983
[5] A theory of biological pattern formation, Kybernetik, Volume 12 (1972), pp. 30-39
[6] Regularity of an elliptic problem with a singular nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, Volume 123 (1993) no. 6, pp. 1021-1029
[7] Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., Volume 12 (1988) no. 11, pp. 1203-1219
[8] Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, Volume 51 (1984), pp. 126-150
[9] A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., Volume 12 (1984) no. 3, pp. 191-202
Cited by Sources:
Comments - Policy