[Un résultat dʼexplosion pour lʼéquation de Schrödinger non linéaire sans invariance de gauge dans le cas périodique]
Dans cette Note, nous démontrons un résultat dʼexplosion en temps fini pour lʼéquation de Schrödinger non linéaire sur le tore
In this Note, we prove a finite-time blowup result for the periodic nonlinear Schrödinger equation on
Accepté le :
Publié le :
Tadahiro Oh 1
@article{CRMATH_2012__350_7-8_389_0, author = {Tadahiro Oh}, title = {A blowup result for the periodic {NLS} without gauge invariance}, journal = {Comptes Rendus. Math\'ematique}, pages = {389--392}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.04.009}, language = {en}, }
Tadahiro Oh. A blowup result for the periodic NLS without gauge invariance. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 389-392. doi : 10.1016/j.crma.2012.04.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.009/
[1] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993) no. 2, pp. 107-156
[2] Exponential sums and nonlinear Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993) no. 2, pp. 157-178
[3] Nonlinear Schrödinger equations, Park City, UT, 1995 (IAS/Park City Math. Ser.), Volume vol. 5, Amer. Math. Soc., Providence, RI (1999), pp. 3-157
[4] Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10, New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI, 2003 (xiv+323 pp)
[5] Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in
[6] Nonexistence of a non-trivial global weak solution for the nonlinear Schrödinger equation with a nongauge invariant power nonlinearity | arXiv
[7] Blow-up results for nonlinear parabolic equations on manifolds, Duke Math. J., Volume 97 (1999) no. 3, pp. 515-539
[8] A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001) no. 2, pp. 109-114
Cité par Sources :
Commentaires - Politique