Comptes Rendus
Partial Differential Equations
A blowup result for the periodic NLS without gauge invariance
[Un résultat dʼexplosion pour lʼéquation de Schrödinger non linéaire sans invariance de gauge dans le cas périodique]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 389-392.

In this Note, we prove a finite-time blowup result for the periodic nonlinear Schrödinger equation on Td with nonlinearity |u|p for p>1. In particular, our blowup result holds above the Strauss exponent. This is in contrast with the non-periodic setting, where global existence for small data is known above the Strauss exponent.

Dans cette Note, nous démontrons un résultat dʼexplosion en temps fini pour lʼéquation de Schrödinger non linéaire sur le tore Td avec une non linéarité du type |u|p, p>1. En particulier, notre résultat dʼexplosion est vrai pour des puissances p plus grandes que lʼexposant de Strauss. Cette situation est contraire au cas non périodique où lʼon connaît que pour p supérieur à lʼexposant de Strauss, le problème de Cauchy est globalement bien posé.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.04.009

Tadahiro Oh 1

1 Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA
@article{CRMATH_2012__350_7-8_389_0,
     author = {Tadahiro Oh},
     title = {A blowup result for the periodic {NLS} without gauge invariance},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {389--392},
     publisher = {Elsevier},
     volume = {350},
     number = {7-8},
     year = {2012},
     doi = {10.1016/j.crma.2012.04.009},
     language = {en},
}
TY  - JOUR
AU  - Tadahiro Oh
TI  - A blowup result for the periodic NLS without gauge invariance
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 389
EP  - 392
VL  - 350
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2012.04.009
LA  - en
ID  - CRMATH_2012__350_7-8_389_0
ER  - 
%0 Journal Article
%A Tadahiro Oh
%T A blowup result for the periodic NLS without gauge invariance
%J Comptes Rendus. Mathématique
%D 2012
%P 389-392
%V 350
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2012.04.009
%G en
%F CRMATH_2012__350_7-8_389_0
Tadahiro Oh. A blowup result for the periodic NLS without gauge invariance. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 389-392. doi : 10.1016/j.crma.2012.04.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.009/

[1] J. Bourgain Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993) no. 2, pp. 107-156

[2] J. Bourgain Exponential sums and nonlinear Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993) no. 2, pp. 157-178

[3] J. Bourgain Nonlinear Schrödinger equations, Park City, UT, 1995 (IAS/Park City Math. Ser.), Volume vol. 5, Amer. Math. Soc., Providence, RI (1999), pp. 3-157

[4] T. Cazenave Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10, New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI, 2003 (xiv+323 pp)

[5] S. Herr; D. Tataru; N. Tzvetkov Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in H1(T3), Duke Math. J., Volume 159 (2011) no. 2, pp. 329-349

[6] M. Ikeda; Y. Wakasugi Nonexistence of a non-trivial global weak solution for the nonlinear Schrödinger equation with a nongauge invariant power nonlinearity | arXiv

[7] Q.S. Zhang Blow-up results for nonlinear parabolic equations on manifolds, Duke Math. J., Volume 97 (1999) no. 3, pp. 515-539

[8] Q.S. Zhang A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001) no. 2, pp. 109-114

  • Ruoyuan Liu Local Well-Posedness of the Periodic Nonlinear Schrödinger Equation with a Quadratic Nonlinearity u2 in Negative Sobolev Spaces, Journal of Dynamics and Differential Equations, Volume 37 (2025) no. 1, p. 509 | DOI:10.1007/s10884-023-10295-x
  • Yue Feng; Georg Maierhofer; Katharina Schratz Long-time error bounds of low-regularity integrators for nonlinear Schrödinger equations, Mathematics of Computation, Volume 93 (2023) no. 348, p. 1569 | DOI:10.1090/mcom/3922
  • Jonathan Jaquette; Jean-Philippe Lessard; Akitoshi Takayasu Global dynamics in nonconservative nonlinear Schrödinger equations, Advances in Mathematics, Volume 398 (2022), p. 108234 | DOI:10.1016/j.aim.2022.108234
  • Ryan McConnell Nonlinear smoothing for the periodic generalized nonlinear Schrödinger equation, Journal of Differential Equations, Volume 341 (2022), p. 353 | DOI:10.1016/j.jde.2022.09.017
  • Kazumasa Fujiwara; Vladimir Georgiev On global existence of L2 solutions for 1D periodic NLS with quadratic nonlinearity, Journal of Mathematical Physics, Volume 62 (2021) no. 9 | DOI:10.1063/5.0033101
  • Kazumasa Fujiwara; Tohru Ozawa Lifespan of strong solutions to the periodic nonlinear Schrödinger equation without gauge invariance, Journal of Evolution Equations, Volume 17 (2017) no. 3, p. 1023 | DOI:10.1007/s00028-016-0364-0
  • Mamoru Okamoto; Piero D'Ancona Blowup and ill-posedness results for a Dirac equation without gauge invariance, Evolution Equations and Control Theory, Volume 5 (2016) no. 2, p. 225 | DOI:10.3934/eect.2016002
  • Kazumasa Fujiwara; Tohru Ozawa Finite time blowup of solutions to the nonlinear Schrödinger equation without gauge invariance, Journal of Mathematical Physics, Volume 57 (2016) no. 8 | DOI:10.1063/1.4960725
  • Masahiro Ikeda; Takahisa Inui Small data blow-up of L 2 or H 1-solution for the semilinear Schrödinger equation without gauge invariance, Journal of Evolution Equations, Volume 15 (2015) no. 3, p. 571 | DOI:10.1007/s00028-015-0273-7
  • Masahiro Ikeda; Takahisa Inui Some non-existence results for the semilinear Schrödinger equation without gauge invariance, Journal of Mathematical Analysis and Applications, Volume 425 (2015) no. 2, p. 758 | DOI:10.1016/j.jmaa.2015.01.003
  • Tadahiro Oh On Nonlinear Schrödinger Equations with Almost Periodic Initial Data, SIAM Journal on Mathematical Analysis, Volume 47 (2015) no. 2, p. 1253 | DOI:10.1137/140973384
  • Tohru Ozawa; Hideaki Sunagawa Small data blow-up for a system of nonlinear Schrödinger equations, Journal of Mathematical Analysis and Applications, Volume 399 (2013) no. 1, p. 147 | DOI:10.1016/j.jmaa.2012.10.003

Cité par 12 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: