In this Note, we prove a finite-time blowup result for the periodic nonlinear Schrödinger equation on with nonlinearity for . In particular, our blowup result holds above the Strauss exponent. This is in contrast with the non-periodic setting, where global existence for small data is known above the Strauss exponent.
Dans cette Note, nous démontrons un résultat dʼexplosion en temps fini pour lʼéquation de Schrödinger non linéaire sur le tore avec une non linéarité du type , . En particulier, notre résultat dʼexplosion est vrai pour des puissances p plus grandes que lʼexposant de Strauss. Cette situation est contraire au cas non périodique où lʼon connaît que pour p supérieur à lʼexposant de Strauss, le problème de Cauchy est globalement bien posé.
Accepted:
Published online:
Tadahiro Oh 1
@article{CRMATH_2012__350_7-8_389_0, author = {Tadahiro Oh}, title = {A blowup result for the periodic {NLS} without gauge invariance}, journal = {Comptes Rendus. Math\'ematique}, pages = {389--392}, publisher = {Elsevier}, volume = {350}, number = {7-8}, year = {2012}, doi = {10.1016/j.crma.2012.04.009}, language = {en}, }
Tadahiro Oh. A blowup result for the periodic NLS without gauge invariance. Comptes Rendus. Mathématique, Volume 350 (2012) no. 7-8, pp. 389-392. doi : 10.1016/j.crma.2012.04.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.04.009/
[1] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993) no. 2, pp. 107-156
[2] Exponential sums and nonlinear Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993) no. 2, pp. 157-178
[3] Nonlinear Schrödinger equations, Park City, UT, 1995 (IAS/Park City Math. Ser.), Volume vol. 5, Amer. Math. Soc., Providence, RI (1999), pp. 3-157
[4] Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10, New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI, 2003 (xiv+323 pp)
[5] Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in , Duke Math. J., Volume 159 (2011) no. 2, pp. 329-349
[6] Nonexistence of a non-trivial global weak solution for the nonlinear Schrödinger equation with a nongauge invariant power nonlinearity | arXiv
[7] Blow-up results for nonlinear parabolic equations on manifolds, Duke Math. J., Volume 97 (1999) no. 3, pp. 515-539
[8] A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001) no. 2, pp. 109-114
Cited by Sources:
Comments - Policy