[Geometrie projective pour les canevas bleus]
Dans cette Note, nous généralisons la Proj-construction des schémas usuels aux schémas bleus. Cela entraine la définition dʼespace projectif et de variétés projectives sur un canevas bleu. En particulier, il est possible de descendre une sous-variété fermée dʼun espace projectif en un -modèle canonique. Nous discutons cela dans le cas de la Grassmannienne .
In this Note, we generalize the Proj-construction from usual schemes to blue schemes. This yields the definition of projective space and projective varieties over a blueprint. In particular, it is possible to descend closed subvarieties of a projective space to a canonical -model. We discuss this in case of the Grassmannian .
Accepté le :
Publié le :
Javier López Peña 1 ; Oliver Lorscheid 2
@article{CRMATH_2012__350_9-10_455_0, author = {Javier L\'opez Pe\~na and Oliver Lorscheid}, title = {Projective geometry for blueprints}, journal = {Comptes Rendus. Math\'ematique}, pages = {455--458}, publisher = {Elsevier}, volume = {350}, number = {9-10}, year = {2012}, doi = {10.1016/j.crma.2012.05.001}, language = {en}, }
Javier López Peña; Oliver Lorscheid. Projective geometry for blueprints. Comptes Rendus. Mathématique, Volume 350 (2012) no. 9-10, pp. 455-458. doi : 10.1016/j.crma.2012.05.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.05.001/
[1] Sheaves and K-theory for -schemes, Adv. Math., Volume 229 (2012) no. 4, pp. 2239-2286
[2] Characteristic 1, entropy and the absolute point, 2009 (preprint) | arXiv
[3] Schemes over , Number Fields and Function Fields—Two Parallel Worlds, Progr. Math., vol. 239, Birkhäuser Boston, Boston, MA, 2005, pp. 87-100
[4] -schemes and toric varieties, Beiträge Algebra Geom., Volume 49 (2008) no. 2, pp. 517-525
[5] Toric singularities, Amer. J. Math., Volume 116 (1994) no. 5, pp. 1073-1099
[6] J. López Peña, -models for cluster algebras and total positivity, in preparation.
[7] Mapping -land an overview of geometries over the field with one element, Noncommutative Geometry, Arithmetic and Related Topics, Johns Hopkins University Press, 2011, pp. 241-265
[8] Torified varieties and their geometries over , Math. Z., Volume 267 (2011) no. 3–4, pp. 605-643
[9] The geometry of blueprints. Part I: Algebraic background and scheme theory, Adv. Math., Volume 229 (2012) no. 3, pp. 1804-1846
[10] The geometry of blueprints. Part II: Tits–Weyl models of algebraic groups, 2012 (preprint) | arXiv
[11] G. Mikhalkin, Tropical geometry, unpublished notes, 2010.
[12] Les variétés sur le corps à un élément, Mosc. Math. J., Volume 4 (2004) no. 1, pp. 217-244 (312)
[13] K. Thas, Notes on , I. Combinatorics of -schemes and -geometry, in preparation.
Cité par Sources :
Commentaires - Politique