Let be a simply connected non-compact real simple Lie group and let be a maximal compact subgroup of . Suppose that is semisimple and that . Let be a Borel–de Siebenthal positive root system and let be the Borel–de Siebenthal discrete series of with Harish-Chandra parameter λ. One has a certain subgroup so that is an irreducible Hermitian symmetric space. Also, there is a holomorphic discrete series of , the non-compact dual of , with Harish-Chandra parameter , where the sum is over non-compact roots in . We prove that there are infinitely many -types common to and under certain hypotheses.
Soit un groupe de Lie simple réel simplement connexe non-compact et soit un sous-groupe compact maximal de . Supposons que soit semisimple, et que . Supposons que soit un système positif de racines de Borel–de Siebenthal de . Soit la représentation de la série discrète de Borel–de Siebenthal de avec paramètre de Harish-Chandra λ. Il existe un sous-groupe connexe tel que soit un espace Hermitien symétrique irréductible. Soit le dual non-compact de par rapport à . On a une série discrète holomorphe de avec paramètre de Harish-Chandra où α parcourt les racines non-compactes de . On montre quʼil existe une infinité de -types communs à et sous certaines hypothèses.
Accepted:
Published online:
Pampa Paul 1; K.N. Raghavan 1; Parameswaran Sankaran 1
@article{CRMATH_2012__350_23-24_1007_0, author = {Pampa Paul and K.N. Raghavan and Parameswaran Sankaran}, title = {$ {L}_{0}$-types common to a {Borel{\textendash}de} {Siebenthal} discrete series and its associated holomorphic discrete series}, journal = {Comptes Rendus. Math\'ematique}, pages = {1007--1009}, publisher = {Elsevier}, volume = {350}, number = {23-24}, year = {2012}, doi = {10.1016/j.crma.2012.11.009}, language = {en}, }
TY - JOUR AU - Pampa Paul AU - K.N. Raghavan AU - Parameswaran Sankaran TI - $ {L}_{0}$-types common to a Borel–de Siebenthal discrete series and its associated holomorphic discrete series JO - Comptes Rendus. Mathématique PY - 2012 SP - 1007 EP - 1009 VL - 350 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2012.11.009 LA - en ID - CRMATH_2012__350_23-24_1007_0 ER -
%0 Journal Article %A Pampa Paul %A K.N. Raghavan %A Parameswaran Sankaran %T $ {L}_{0}$-types common to a Borel–de Siebenthal discrete series and its associated holomorphic discrete series %J Comptes Rendus. Mathématique %D 2012 %P 1007-1009 %V 350 %N 23-24 %I Elsevier %R 10.1016/j.crma.2012.11.009 %G en %F CRMATH_2012__350_23-24_1007_0
Pampa Paul; K.N. Raghavan; Parameswaran Sankaran. $ {L}_{0}$-types common to a Borel–de Siebenthal discrete series and its associated holomorphic discrete series. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1007-1009. doi : 10.1016/j.crma.2012.11.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.11.009/
[1] Representation Theory of Semisimple Groups. An Overview Based on Examples, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001 (reprint of the 1986 original)
[2] A Littlewood–Richardson rule for symmetrizable Kac–Moody algebras, Invent. Math., Volume 116 (1994), pp. 329-346
[3] Geometry of the Borel–de Siebenthal discrete series, J. Lie Theory, Volume 20 (2010) no. 1, pp. 175-212
[4] An algebraic construction of a class of representations of a semi-simple Lie algebra, Math. Ann., Volume 226 (1977) no. 1, pp. 1-52
[5] -types common to a Borel–de Siebenthal discrete series and its associated holomorphic discrete series | arXiv
[6] Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math., Volume 9 (1969/1970), pp. 61-80
Cited by Sources:
Comments - Policy