A 3D–2D dimension reduction for a nonlinear optimal design problem with a perimeter penalization is performed in the realm of Γ-convergence, providing an integral representation for the limit functional.
On effectue dans ce travail une réduction dimensionnelle 3D–2D dʼun problème non linéaire dʼoptimisation de forme avec une pénalisation du périmètre. Une représentation intégrale de la fonctionnelle limite est obtenue.
Accepted:
Published online:
Graça Carita 1; Elvira Zappale 2
@article{CRMATH_2012__350_23-24_1011_0, author = {Gra\c{c}a Carita and Elvira Zappale}, title = {3D{\textendash}2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization}, journal = {Comptes Rendus. Math\'ematique}, pages = {1011--1016}, publisher = {Elsevier}, volume = {350}, number = {23-24}, year = {2012}, doi = {10.1016/j.crma.2012.11.005}, language = {en}, }
TY - JOUR AU - Graça Carita AU - Elvira Zappale TI - 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization JO - Comptes Rendus. Mathématique PY - 2012 SP - 1011 EP - 1016 VL - 350 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2012.11.005 LA - en ID - CRMATH_2012__350_23-24_1011_0 ER -
%0 Journal Article %A Graça Carita %A Elvira Zappale %T 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization %J Comptes Rendus. Mathématique %D 2012 %P 1011-1016 %V 350 %N 23-24 %I Elsevier %R 10.1016/j.crma.2012.11.005 %G en %F CRMATH_2012__350_23-24_1011_0
Graça Carita; Elvira Zappale. 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1011-1016. doi : 10.1016/j.crma.2012.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.11.005/
[1] Shape Optimization by the Homogenization Method, Springer, Berlin, 2002
[2] An optimal design problem with perimeter penalization, Calc. Var. Partial Differential Equations, Volume 1 (1993) no. 1, pp. 55-69
[3] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., Clarendon Press, Oxford, 2000 (xviii)
[4] Spatial heterogeneity in 3D–2D dimensional reduction, ESAIM Control Optim. Calc. Var., Volume 11 (2005), pp. 139-160
[5] Equi-integrability results for 3D–2D dimension reduction problems, ESAIM Control Optim. Calc. Var., Volume 7 (2002), pp. 443-470
[6] 3D–2D analysis for the optimal elastic compliance problem, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007), pp. 713-718
[7] The optimal compliance problem for thin torsion rods: A 3D–1D analysis leading to Cheeger-type solutions, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 467-471
[8] G. Bouchitté, I. Fragalá, P. Seppecher, Structural optimization of thin plates: the three dimensional approach, preprint.
[9] 3D–2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., Volume 49 (2000) no. 4, pp. 1367-1404
[10] M. Carozza, I. Fonseca, A. Passarelli di Napoli, in preparation.
[11] Mathematical Elasticity, vol. 2, Theory of Plates, Stud. Math. Appl., vol. 27, North-Holland, Amsterdam, 1997
[12] An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Inc., Boston, MA, 1983
[13] 3D–2D asymptotic analysis of an optimal design problem for thin films, J. Reine Angew. Math., Volume 505 (1998), pp. 173-202
[14] Regularity in two-dimensional variational problems with perimeter penalties, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 261-266
[15] Regularity of components in optimal design problems with perimeter penalization, Calc. Var. Partial Differential Equations, Volume 16 (2003) no. 1, pp. 17-29
[16] The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995), pp. 549-578
[17] Partial regularity for optimal design problems involving both bulk and surface energies, Chin. Ann. Math. Ser. B, Volume 20 (1999) no. 2, pp. 137-158
Cited by Sources:
Comments - Policy