Comptes Rendus
Mathematical Analysis/Calculus of Variations
3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization
Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1011-1016.

A 3D–2D dimension reduction for a nonlinear optimal design problem with a perimeter penalization is performed in the realm of Γ-convergence, providing an integral representation for the limit functional.

On effectue dans ce travail une réduction dimensionnelle 3D–2D dʼun problème non linéaire dʼoptimisation de forme avec une pénalisation du périmètre. Une représentation intégrale de la fonctionnelle limite est obtenue.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2012.11.005

Graça Carita 1; Elvira Zappale 2

1 CIMA-UE, Departamento de Matemática, Universidade de Évora, Rua Romão Ramalho, 59 7000-671 Évora, Portugal
2 D.I.IN., Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
@article{CRMATH_2012__350_23-24_1011_0,
     author = {Gra\c{c}a Carita and Elvira Zappale},
     title = {3D{\textendash}2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1011--1016},
     publisher = {Elsevier},
     volume = {350},
     number = {23-24},
     year = {2012},
     doi = {10.1016/j.crma.2012.11.005},
     language = {en},
}
TY  - JOUR
AU  - Graça Carita
AU  - Elvira Zappale
TI  - 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 1011
EP  - 1016
VL  - 350
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2012.11.005
LA  - en
ID  - CRMATH_2012__350_23-24_1011_0
ER  - 
%0 Journal Article
%A Graça Carita
%A Elvira Zappale
%T 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization
%J Comptes Rendus. Mathématique
%D 2012
%P 1011-1016
%V 350
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2012.11.005
%G en
%F CRMATH_2012__350_23-24_1011_0
Graça Carita; Elvira Zappale. 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization. Comptes Rendus. Mathématique, Volume 350 (2012) no. 23-24, pp. 1011-1016. doi : 10.1016/j.crma.2012.11.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.11.005/

[1] G. Allaire Shape Optimization by the Homogenization Method, Springer, Berlin, 2002

[2] L. Ambrosio; G. Buttazzo An optimal design problem with perimeter penalization, Calc. Var. Partial Differential Equations, Volume 1 (1993) no. 1, pp. 55-69

[3] L. Ambrosio; N. Fusco; D. Pallara Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., Clarendon Press, Oxford, 2000 (xviii)

[4] J.F. Babadjian; G. Francfort Spatial heterogeneity in 3D–2D dimensional reduction, ESAIM Control Optim. Calc. Var., Volume 11 (2005), pp. 139-160

[5] M. Bocea; I. Fonseca Equi-integrability results for 3D–2D dimension reduction problems, ESAIM Control Optim. Calc. Var., Volume 7 (2002), pp. 443-470

[6] G. Bouchitté; I. Fragalá; P. Seppecher 3D–2D analysis for the optimal elastic compliance problem, C. R. Acad. Sci. Paris, Ser. I, Volume 345 (2007), pp. 713-718

[7] G. Bouchitté; I. Fragalá; P. Seppecher The optimal compliance problem for thin torsion rods: A 3D–1D analysis leading to Cheeger-type solutions, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 467-471

[8] G. Bouchitté, I. Fragalá, P. Seppecher, Structural optimization of thin plates: the three dimensional approach, preprint.

[9] A. Braides; I. Fonseca; G. Francfort 3D–2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., Volume 49 (2000) no. 4, pp. 1367-1404

[10] M. Carozza, I. Fonseca, A. Passarelli di Napoli, in preparation.

[11] P. Ciarlet Mathematical Elasticity, vol. 2, Theory of Plates, Stud. Math. Appl., vol. 27, North-Holland, Amsterdam, 1997

[12] G. Dal Maso An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Inc., Boston, MA, 1983

[13] I. Fonseca; G. Francfort 3D–2D asymptotic analysis of an optimal design problem for thin films, J. Reine Angew. Math., Volume 505 (1998), pp. 173-202

[14] C.J. Larsen Regularity in two-dimensional variational problems with perimeter penalties, C. R. Acad. Sci. Paris, Ser. I, Volume 333 (2001), pp. 261-266

[15] C.J. Larsen Regularity of components in optimal design problems with perimeter penalization, Calc. Var. Partial Differential Equations, Volume 16 (2003) no. 1, pp. 17-29

[16] H. Le Dret; A. Raoult The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995), pp. 549-578

[17] F.H. Lin; R.V. Kohn Partial regularity for optimal design problems involving both bulk and surface energies, Chin. Ann. Math. Ser. B, Volume 20 (1999) no. 2, pp. 137-158

Cited by Sources:

Comments - Policy