We prove some algebraic results on the ring of matrix differential operators over a differential field in the generality of non-commutative principal ideal rings. These results are used in the theory of non-local Poisson structures.
Nous démontrons quelques résultats algébriques sur lʼanneau des matrices dʼopérateurs différentiels sur un corps différentiel dans le cas général des anneaux principaux non commutatifs. Ces résultats sont utilisés dans la théorie des structures de Poisson non locales.
Accepted:
Published online:
Sylvain Carpentier 1; Alberto De Sole 2; Victor G. Kac 3
@article{CRMATH_2013__351_1-2_5_0, author = {Sylvain Carpentier and Alberto De Sole and Victor G. Kac}, title = {Some remarks on non-commutative principal ideal rings}, journal = {Comptes Rendus. Math\'ematique}, pages = {5--8}, publisher = {Elsevier}, volume = {351}, number = {1-2}, year = {2013}, doi = {10.1016/j.crma.2013.01.006}, language = {en}, }
Sylvain Carpentier; Alberto De Sole; Victor G. Kac. Some remarks on non-commutative principal ideal rings. Comptes Rendus. Mathématique, Volume 351 (2013) no. 1-2, pp. 5-8. doi : 10.1016/j.crma.2013.01.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.01.006/
[1] Some algebraic properties of matrix differential operators and their Dieudonné determinant, J. Math. Phys., Volume 53 (2012), p. 063501
[2] Rational matrix pseudodifferential operators, 2012 (preprint) | arXiv
[3] Non-local Poisson structures and applications to the theory of integrable systems I, 2012 (preprint) | arXiv
[4] Non-local Poisson structures and applications to the theory of integrable systems II, 2012 (preprint) | arXiv
[5] Dirac Structures and Integrability of Nonlinear Evolution Equations, Nonlinear Sci. Theory Appl., Wiley & Sons, New York, 1993
[6] Non-Commutative Noetherian Rings, Grad. Stud. Math., vol. 30, American Mathematical Society, Providence, RI, 2001
[7] Regularity of zero divisors, Proc. Lond. Math. Soc. (3), Volume 44 (1982) no. 3, pp. 405-419
[8] J.T. Stafford, private communication, 2012.
Cited by Sources:
Comments - Policy