[Une formule dʼentropie reliant lʼentropie de Hamilton des surfaces et lʼentropie
In this note, based on Hamiltonʼs surface entropy formula, we construct an entropy formula of Perelmanʼs type for the Ricci flow on a closed surface with positive curvature. Similar to Perelmanʼs
Dans cette note, à partir de la formule de Hamilton pour lʼentropie des surfaces, nous construisons une formule dʼentropie de type Perelman pour le flot de Ricci sur une surface fermée à courbure positive. De même que pour lʼentropie
Accepté le :
Publié le :
Hongxin Guo 1
@article{CRMATH_2013__351_3-4_115_0, author = {Hongxin Guo}, title = {An entropy formula relating {Hamilton's} surface entropy and {Perelman's} $ \mathcal{W}$ entropy}, journal = {Comptes Rendus. Math\'ematique}, pages = {115--118}, publisher = {Elsevier}, volume = {351}, number = {3-4}, year = {2013}, doi = {10.1016/j.crma.2013.03.003}, language = {en}, }
Hongxin Guo. An entropy formula relating Hamiltonʼs surface entropy and Perelmanʼs $ \mathcal{W}$ entropy. Comptes Rendus. Mathématique, Volume 351 (2013) no. 3-4, pp. 115-118. doi : 10.1016/j.crma.2013.03.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.03.003/
[1] On the entropy estimate for the Ricci flow on compact 2-orbifolds, J. Differ. Geom., Volume 33 (1991) no. 2, pp. 597-600
[2] The Ricci Flow: An Introduction, Math. Surveys Monogr., vol. 110, Amer. Math. Soc., Providence, RI, 2004
[3] Hamiltonʼs Ricci Flow, Grad. Stud. Math., vol. 77, Amer. Math. Soc./Science Press, Providence, RI/New York, 2006
[4] Hongxin Guo, Robert Philipowski, Anton Thalmaier, Entropy and lowest eigenvalue on evolving manifolds, Pacific J. Math., in press.
[5] The Ricci flow on surfaces, Santa Cruz, CA, 1986 (Contemporary Mathematics), Volume vol. 71, American Mathematical Society, Providence, RI (1988), pp. 237-262
[6] The entropy formula for linear heat equation, J. Geom. Anal., Volume 14 (2004) no. 1, pp. 87-100 (Addenda: J. Geom. Anal., 14, 2, 2004, pp. 369-374)
[7] The entropy formula for the Ricci flow and its geometric applications | arXiv
Cité par Sources :
Commentaires - Politique