In this note, we derive explicit formulas for the Schrödinger wave operators in under the assumption that the 0-energy is neither an eigenvalue nor a resonance. These formulas justify the use of a recently introduced topological approach of scattering theory to obtain index theorems.
Dans cette note, nous dérivons des formules explicites pour les opérateurs dʼonde de Schrödinger dans , sous lʼhypothèse que lʼénergie 0 nʼest, ni une valeur propre, ni une résonance. Ces formules légitiment lʼemploi dʼune approche topologique de la théorie de la diffusion récemment introduite pour obtenir des théorèmes dʼindice.
Accepted:
Published online:
Serge Richard 1; Rafael Tiedra de Aldecoa 2
@article{CRMATH_2013__351_5-6_209_0, author = {Serge Richard and Rafael Tiedra de Aldecoa}, title = {Explicit formulas for the {Schr\"odinger} wave operators in $ {\mathbb{R}}^{2}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {209--214}, publisher = {Elsevier}, volume = {351}, number = {5-6}, year = {2013}, doi = {10.1016/j.crma.2013.03.006}, language = {en}, }
TY - JOUR AU - Serge Richard AU - Rafael Tiedra de Aldecoa TI - Explicit formulas for the Schrödinger wave operators in $ {\mathbb{R}}^{2}$ JO - Comptes Rendus. Mathématique PY - 2013 SP - 209 EP - 214 VL - 351 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2013.03.006 LA - en ID - CRMATH_2013__351_5-6_209_0 ER -
Serge Richard; Rafael Tiedra de Aldecoa. Explicit formulas for the Schrödinger wave operators in $ {\mathbb{R}}^{2}$. Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 209-214. doi : 10.1016/j.crma.2013.03.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.03.006/
[1] Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 2 (1975) no. 2, pp. 151-218
[2] -groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, Prog. Math., vol. 135, Birkhäuser, Basel, 1996
[3] Scattering theory for lattice operators in dimension , Rev. Math. Phys., Volume 24 (2012) no. 08, p. 1250020
[4] Threshold scattering in two dimensions, Ann. Inst. Henri Poincaré, a Phys. Théor., Volume 48 (1988) no. 2, pp. 175-204
[5] M.B. Erdoğan, W.R. Green, A weighted dispersive estimate for Schrödinger operators in dimension two, Commun. Math. Phys., , in press, preprint on . | arXiv | DOI
[6] M.B. Erdoğan, W.R. Green, Dispersive estimates for Schrödinger operators in dimension two with obstructions at zero energy, Trans. Amer. Math. Soc., in press, preprint on . | arXiv
[7] On the wave operators for the Friedrichs–Faddeev model, Ann. Inst. Henri Poincaré, Volume 13 (2012), pp. 1469-1482
[8] Handbook of Mathematical Formulas and Integrals, Academic Press, Inc., San Diego, CA, 1995
[9] A unified approach to resolvent expansions at thresholds, Rev. Math. Phys., Volume 13 (2001) no. 6, pp. 717-754
[10] A remark on -boundedness of wave operators for two-dimensional Schrödinger operators, Commun. Math. Phys., Volume 225 (2002) no. 3, pp. 633-637
[11] Growth properties of solutions of the reduced wave equation with a variable coefficient, Commun. Pure Appl. Math., Volume 12 (1959), pp. 403-425
[12] Levinsonʼs theorem and higher degree traces for the Aharonov–Bohm operators, J. Math. Phys., Volume 52 (2011), p. 052102
[13] Levinsonʼs theorem for Schrödinger operators with point interaction: a topological approach, J. Phys. A, Volume 39 (2006) no. 46, pp. 14397-14403
[14] On the structure of the wave operators in one dimensional potential scattering, Math. Phys. Electron. J., Volume 14 (2008), pp. 1-21
[15] On the wave operators and Levinsonʼs theorem for potential scattering in , Asian-Eur. J. Math., Volume 5 (2012), p. 1250004-1-1250004-22
[16] Universality of low-energy scattering in dimensions: the nonsymmetric case, J. Math. Phys., Volume 46 (2005) no. 3, p. 032103
[17] Low-energy potential scattering in two and three dimensions, J. Math. Phys., Volume 50 (2009) no. 7, p. 072105
[18] Scattering theory for differential operators. I. Operator theory, J. Math. Soc. Jpn., Volume 25 (1973), pp. 75-104
[19] Spectral and scattering theory for the Aharonov–Bohm operators, Rev. Math. Phys., Volume 23 (2011), pp. 53-81
[20] New formulae for the wave operators for a rank one interaction, Integral Equations Operator Theory, Volume 66 (2010), pp. 283-292
[21] New expressions for the wave operators of Schrödinger operators in (preprint on) | arXiv
[22] Dispersive estimates for Schrödinger operators in dimension two, Commun. Math. Phys., Volume 257 (2005) no. 1, pp. 87-117
[23] Universality of entanglement creation in low-energy two-dimensional scattering (preprint on) | arXiv
[24] Mathematical Scattering Theory, Transl. Math. Monogr., vol. 105, American Mathematical Society, Providence, RI, 1992
[25] Mathematical Scattering Theory. Analytic Theory, Math. Surveys Monogr., vol. 158, American Mathematical Society, Providence, RI, 2010
[26] -boundedness of wave operators for two-dimensional Schrödinger operators, Commun. Math. Phys., Volume 208 (1999) no. 1, pp. 125-152
Cited by Sources:
Comments - Policy