[Sous-normalité de shifts pondérés à deux variables avec cœur diagonal]
The Lifting Problem for Commuting Subnormals (LPCS) asks for necessary and sufficient conditions for a pair of subnormal operators on Hilbert space to admit commuting normal extensions. Given a 2-variable weighted shift T with diagonal core, we prove that LPCS is soluble for T if and only if LPCS is soluble for some power
Le problème du relèvement des opérateurs sous-normaux commutatifs (LPCS) consiste à rechercher des conditions nécessaires ou suffisantes pour que deux opérateurs sous-normaux sur lʼespace de Hilbert admettent des extensions normales commutatives. Étant donné un opérateur de décalage pondéré T à deux variables avec cœur diagonal, nous prouvons que le LPCS est résoluble pour T si et seulement si le LPCS est résoluble pour une certaine puissance
Accepté le :
Publié le :
Raúl Enrique Curto 1 ; Sang Hoon Lee 2 ; Jasang Yoon 3
@article{CRMATH_2013__351_5-6_203_0, author = {Ra\'ul Enrique Curto and Sang Hoon Lee and Jasang Yoon}, title = {Subnormality of 2-variable weighted shifts with diagonal core}, journal = {Comptes Rendus. Math\'ematique}, pages = {203--207}, publisher = {Elsevier}, volume = {351}, number = {5-6}, year = {2013}, doi = {10.1016/j.crma.2013.03.002}, language = {en}, }
TY - JOUR AU - Raúl Enrique Curto AU - Sang Hoon Lee AU - Jasang Yoon TI - Subnormality of 2-variable weighted shifts with diagonal core JO - Comptes Rendus. Mathématique PY - 2013 SP - 203 EP - 207 VL - 351 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2013.03.002 LA - en ID - CRMATH_2013__351_5-6_203_0 ER -
Raúl Enrique Curto; Sang Hoon Lee; Jasang Yoon. Subnormality of 2-variable weighted shifts with diagonal core. Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 203-207. doi : 10.1016/j.crma.2013.03.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.03.002/
[1] The Theory of Subnormal Operators, Mathematical Surveys and Monographs, vol. 36, Amer. Math. Soc., Providence, 1991
[2] Quadratically hyponormal weighted shifts, Integral Equations Operator Theory, Volume 13 (1990), pp. 49-66
[3] Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory, Volume 17 (1993), pp. 202-246
[4] k-Hyponormality of powers of weighted shifts, Proc. Amer. Math. Soc., Volume 131 (2002), pp. 2762-2769
[5] Jointly hyponormal pairs of subnormal operators need not be jointly subnormal, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 5139-5159
[6] Disintegration-of-measure techniques for multivariable weighted shifts, Proc. Lond. Math. Soc., Volume 93 (2006), pp. 381-402
[7] When is hyponormality for 2-variable weighted shifts invariant under powers?, Indiana Univ. Math. J., Volume 60 (2011), pp. 997-1032
[8] Extensions and extremality of recursively generated weighted shifts, Proc. Amer. Math. Soc., Volume 130 (2002) no. 2, pp. 565-576
[9] k-Hyponormality of multivariable weighted shifts, J. Funct. Anal., Volume 229 (2005), pp. 462-480
[10] Hyponormality and subnormality for powers of commuting pairs of subnormal operators, J. Funct. Anal., Volume 245 (2007), pp. 390-412
[11] Reconstruction of the Berger measure when the core is of tensor form, Bibl. Rev. Mat. Iberoamericana (2007), pp. 317-331
[12] Subnormality of arbitrary powers of 2-variable weighted shifts whose restrictions to a large invariant subspace are tensor form, J. Funct. Anal., Volume 262 (2012), pp. 569-583
[13] A generalization of the Halmos–Bram criterion for subnormality?, Acta Sci. Math. (Szeged), Volume 35 (1973), pp. 61-64
[14] Polynomially subnormal operator tuples, J. Oper. Theory, Volume 31 (1994), pp. 219-228
[15] A Hilbert Space Problem Book, Graduate Texts in Mathematics, vol. 19, Springer-Verlag, New York, Berlin, 1982
[16] Commuting weighted shifts and analytic function theory in several variables, J. Oper. Theory, Volume 1 (1979), pp. 207-223
[17] Subnormality and weighted shifts, J. Lond. Math. Soc., Volume 14 (1976), pp. 476-480
[18] Weighted shifts and commuting normal extension, J. Aust. Math. Soc. A, Volume 27 (1979) no. 1, pp. 17-26
[19] k-Hyponormality of weighted shifts, Proc. Amer. Math. Soc., Volume 116 (1992), pp. 165-169
[20] Weighted shift operators and analytic function theory, Math. Surv., Volume 13 (1974), pp. 49-128
[21] Which weighted shifts are subnormal?, Pac. J. Math., Volume 17 (1966), pp. 367-379
[22] Wolfram Research Inc., Mathematica, Version 4.2, Wolfram Research Inc., Champaign, IL, 2002.
- Polynomial Embeddings of Unilateral Weighted shifts in 2–Variable Weighted Shifts, Integral Equations and Operator Theory, Volume 93 (2021) no. 6 | DOI:10.1007/s00020-021-02681-1
- Subnormality of Powers of Multivariable Weighted Shifts, Journal of Function Spaces, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/5678795
- Aluthge Transforms of 2-Variable Weighted Shifts, Integral Equations and Operator Theory, Volume 90 (2018) no. 5 | DOI:10.1007/s00020-018-2475-1
- An answer to a question of A. Lubin: The lifting problem for commuting subnormals, Israel Journal of Mathematics, Volume 222 (2017) no. 1, p. 201 | DOI:10.1007/s11856-017-1587-7
- Schur product techniques for the subnormality of commuting 2-variable weighted shifts, Linear Algebra and its Applications, Volume 453 (2014), p. 174 | DOI:10.1016/j.laa.2014.04.013
Cité par 5 documents. Sources : Crossref
☆ The first named author was partially supported by NSF Grants DMS-0400741 and DMS-0801168. The second named author was partially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0085279). The third named author was partially supported by a Faculty Research Council Grant at The University of Texas-Pan American.
Commentaires - Politique