FETI is a very popular method, which has proved to be extremely efficient on many large-scale industrial problems. One drawback is that it performs best when the decomposition of the global problem is closely related to the parameters in equations. This is somewhat confirmed by the fact that the theoretical analysis goes through only if some assumptions on the coefficients are satisfied. We propose here to build a coarse space for which the convergence rate of the two-level method is guaranteed regardless of any additional assumptions. We do this by identifying the problematic modes using generalized eigenvalue problems.
La méthode FETI a demontré son efficacité et sa compétitivité sur de nombreux problèmes industriels. Un désavantage est que ses performances dépendent fortement de la distribution des coefficients dans les équations. Ceci est en quelque sorte confirmé par le fait que lʼanalyse théorique requiert des hypothèses sur ces coefficients et le partitionnement. Nous proposons ici la construction dʼun espace grossier telle que le taux de convergence de la méthode à deux niveaux soit garanti sans hypothèses supplémentaires. Cette construction repose sur lʼidentification des modes problématiques grâce à la résolution de problèmes aux valeurs propres généralisés.
Accepted:
Published online:
Nicole Spillane 1, 2; Victorita Dolean 3; Patrice Hauret 2; Frédéric Nataf 1; Daniel J. Rixen 4
@article{CRMATH_2013__351_5-6_197_0, author = {Nicole Spillane and Victorita Dolean and Patrice Hauret and Fr\'ed\'eric Nataf and Daniel J. Rixen}, title = {Solving generalized eigenvalue problems on the interfaces to build a robust two-level {FETI} method}, journal = {Comptes Rendus. Math\'ematique}, pages = {197--201}, publisher = {Elsevier}, volume = {351}, number = {5-6}, year = {2013}, doi = {10.1016/j.crma.2013.03.010}, language = {en}, }
TY - JOUR AU - Nicole Spillane AU - Victorita Dolean AU - Patrice Hauret AU - Frédéric Nataf AU - Daniel J. Rixen TI - Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method JO - Comptes Rendus. Mathématique PY - 2013 SP - 197 EP - 201 VL - 351 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2013.03.010 LA - en ID - CRMATH_2013__351_5-6_197_0 ER -
%0 Journal Article %A Nicole Spillane %A Victorita Dolean %A Patrice Hauret %A Frédéric Nataf %A Daniel J. Rixen %T Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method %J Comptes Rendus. Mathématique %D 2013 %P 197-201 %V 351 %N 5-6 %I Elsevier %R 10.1016/j.crma.2013.03.010 %G en %F CRMATH_2013__351_5-6_197_0
Nicole Spillane; Victorita Dolean; Patrice Hauret; Frédéric Nataf; Daniel J. Rixen. Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method. Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 197-201. doi : 10.1016/j.crma.2013.03.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.03.010/
[1] An iterative method with convergence rate chosen a priori, University of Colorado Denver, CCM, University of Colorado, Denver, April 1999 (Technical Report 140)
[2] Conjugate gradient method with preconditioning by projector, Int. J. Comput. Math., Volume 23 (1988) no. 3–4, pp. 315-323
[3] Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms, ESAIM, Volume 46 (2012) no. 05, pp. 1175-1199
[4] A scalable Lagrange multiplier based domain decomposition method for time-dependent problems, Int. J. Numer. Methods Eng., Volume 38 (1995) no. 22, pp. 3831-3853
[5] A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Methods Eng., Volume 32 (1991), pp. 1205-1227
[6] Domain decomposition preconditioners for multiscale flows in high-contrast media: reduced dimension coarse spaces, Multiscale Model. Simul., Volume 8 (2010) no. 5, pp. 1621-1644
[7] FETI and Neumann–Neumann iterative substructuring methods: connections and new results, Commun. Pure Appl. Math., Volume 54 (2001) no. 1, pp. 57-90
[8] Convergence of a substructuring method with Lagrange multipliers, Numer. Math., Volume 73 (1996) no. 4, pp. 473-487
[9] Iterative Methods for Sparse Linear Systems, SIAM, 2003
[10] Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, 2007 (NuMa-Report, 2011-07)
[11] A robust two-level domain decomposition preconditioner for systems of PDEs, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 23–24, pp. 1255-1259
[12] Automatic spectral coarse spaces for robust FETI and BDD algorithms (Int. J. Numer. Methods Eng., submitted for publication, preprint is available at) | HAL
[13] Domain Decomposition Methods: Algorithms and Theory, Springer, 2005
Cited by Sources:
Comments - Policy