Comptes Rendus
Partial Differential Equations/Numerical Analysis
Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method
Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 197-201.

FETI is a very popular method, which has proved to be extremely efficient on many large-scale industrial problems. One drawback is that it performs best when the decomposition of the global problem is closely related to the parameters in equations. This is somewhat confirmed by the fact that the theoretical analysis goes through only if some assumptions on the coefficients are satisfied. We propose here to build a coarse space for which the convergence rate of the two-level method is guaranteed regardless of any additional assumptions. We do this by identifying the problematic modes using generalized eigenvalue problems.

La méthode FETI a demontré son efficacité et sa compétitivité sur de nombreux problèmes industriels. Un désavantage est que ses performances dépendent fortement de la distribution des coefficients dans les équations. Ceci est en quelque sorte confirmé par le fait que lʼanalyse théorique requiert des hypothèses sur ces coefficients et le partitionnement. Nous proposons ici la construction dʼun espace grossier telle que le taux de convergence de la méthode à deux niveaux soit garanti sans hypothèses supplémentaires. Cette construction repose sur lʼidentification des modes problématiques grâce à la résolution de problèmes aux valeurs propres généralisés.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.03.010
Nicole Spillane 1, 2; Victorita Dolean 3; Patrice Hauret 2; Frédéric Nataf 1; Daniel J. Rixen 4

1 Laboratoire Jacques-Louis-Lions, UMR 7598, université Pierre-et-Marie-Curie (Paris 6), 75252 Paris cedex 05, France
2 Michelin Technology Center, place des Carmes-Déchaux, 63000 Clermont-Ferrand, France
3 Laboratoire Jean-Alexandre-Dieudonné, UMR 6621, université de Nice–Sophia Antipolis, 06108 Nice cedex 02, France
4 Institute of Applied Mechanics, TU München, 85747 Garching, Germany
@article{CRMATH_2013__351_5-6_197_0,
     author = {Nicole Spillane and Victorita Dolean and Patrice Hauret and Fr\'ed\'eric Nataf and Daniel J. Rixen},
     title = {Solving generalized eigenvalue problems on the interfaces to build a robust two-level {FETI} method},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {197--201},
     publisher = {Elsevier},
     volume = {351},
     number = {5-6},
     year = {2013},
     doi = {10.1016/j.crma.2013.03.010},
     language = {en},
}
TY  - JOUR
AU  - Nicole Spillane
AU  - Victorita Dolean
AU  - Patrice Hauret
AU  - Frédéric Nataf
AU  - Daniel J. Rixen
TI  - Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 197
EP  - 201
VL  - 351
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2013.03.010
LA  - en
ID  - CRMATH_2013__351_5-6_197_0
ER  - 
%0 Journal Article
%A Nicole Spillane
%A Victorita Dolean
%A Patrice Hauret
%A Frédéric Nataf
%A Daniel J. Rixen
%T Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method
%J Comptes Rendus. Mathématique
%D 2013
%P 197-201
%V 351
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2013.03.010
%G en
%F CRMATH_2013__351_5-6_197_0
Nicole Spillane; Victorita Dolean; Patrice Hauret; Frédéric Nataf; Daniel J. Rixen. Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method. Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 197-201. doi : 10.1016/j.crma.2013.03.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.03.010/

[1] M. Brezina; C. Heberton; J. Mandel; P. Vaněk An iterative method with convergence rate chosen a priori, University of Colorado Denver, CCM, University of Colorado, Denver, April 1999 (Technical Report 140)

[2] Z. Dostàl Conjugate gradient method with preconditioning by projector, Int. J. Comput. Math., Volume 23 (1988) no. 3–4, pp. 315-323

[3] Y. Efendiev; J. Galvis; R. Lazarov; J. Willems Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms, ESAIM, Volume 46 (2012) no. 05, pp. 1175-1199

[4] C. Farhat; P.S. Chen; J. Mandel A scalable Lagrange multiplier based domain decomposition method for time-dependent problems, Int. J. Numer. Methods Eng., Volume 38 (1995) no. 22, pp. 3831-3853

[5] C. Farhat; F.-X. Roux A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Methods Eng., Volume 32 (1991), pp. 1205-1227

[6] J. Galvis; Y. Efendiev Domain decomposition preconditioners for multiscale flows in high-contrast media: reduced dimension coarse spaces, Multiscale Model. Simul., Volume 8 (2010) no. 5, pp. 1621-1644

[7] A. Klawonn; O.B. Widlund FETI and Neumann–Neumann iterative substructuring methods: connections and new results, Commun. Pure Appl. Math., Volume 54 (2001) no. 1, pp. 57-90

[8] J. Mandel; R. Tezaur Convergence of a substructuring method with Lagrange multipliers, Numer. Math., Volume 73 (1996) no. 4, pp. 473-487

[9] Y. Saad Iterative Methods for Sparse Linear Systems, SIAM, 2003

[10] N. Spillane; V. Dolean; P. Hauret; F. Nataf; C. Pechstein; R. Scheichl Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, 2007 (NuMa-Report, 2011-07)

[11] N. Spillane; V. Dolean; P. Hauret; F. Nataf; C. Pechstein; R. Scheichl A robust two-level domain decomposition preconditioner for systems of PDEs, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 23–24, pp. 1255-1259

[12] N. Spillane; D. Rixen Automatic spectral coarse spaces for robust FETI and BDD algorithms (Int. J. Numer. Methods Eng., submitted for publication, preprint is available at) | HAL

[13] A. Toselli; O. Widlund Domain Decomposition Methods: Algorithms and Theory, Springer, 2005

Cited by Sources:

Comments - Policy


Articles of potential interest

A GenEO Domain Decomposition method for Saddle Point problems

Frédéric Nataf; Pierre-Henri Tournier

C. R. Méca (2023)


A robust two-level domain decomposition preconditioner for systems of PDEs

Nicole Spillane; Victorita Dolean; Patrice Hauret; ...

C. R. Math (2011)


Domain decomposition methods of dual-primal FETI type for edge element approximations in three dimensions

Andrea Toselli

C. R. Math (2004)