Comptes Rendus
Functional Analysis
On T. Bartoszynskiʼs structure theorem for measurable filters
Comptes Rendus. Mathématique, Volume 351 (2013) no. 7-8, pp. 281-284.

We give a streamlined proof of T. Bartoszynskiʼs characterization of Lebesgue-measurable filters.

Nous donnons une démonstration simplifiée dʼun théorème remarkable de T. Bartoszynski caractérisant les filtres qui sont Lebesgue-mesurables en tant que sous-ensembles de {0,1}N.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.04.009
Michel Talagrand 1

1 Institut de Mathématiques, UMR 7586 CNRS, 4, place Jussieu, 75230 Paris cedex 05, France
@article{CRMATH_2013__351_7-8_281_0,
     author = {Michel Talagrand},
     title = {On {T.} {Bartoszynski's} structure theorem for measurable filters},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {281--284},
     publisher = {Elsevier},
     volume = {351},
     number = {7-8},
     year = {2013},
     doi = {10.1016/j.crma.2013.04.009},
     language = {en},
}
TY  - JOUR
AU  - Michel Talagrand
TI  - On T. Bartoszynskiʼs structure theorem for measurable filters
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 281
EP  - 284
VL  - 351
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2013.04.009
LA  - en
ID  - CRMATH_2013__351_7-8_281_0
ER  - 
%0 Journal Article
%A Michel Talagrand
%T On T. Bartoszynskiʼs structure theorem for measurable filters
%J Comptes Rendus. Mathématique
%D 2013
%P 281-284
%V 351
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2013.04.009
%G en
%F CRMATH_2013__351_7-8_281_0
Michel Talagrand. On T. Bartoszynskiʼs structure theorem for measurable filters. Comptes Rendus. Mathématique, Volume 351 (2013) no. 7-8, pp. 281-284. doi : 10.1016/j.crma.2013.04.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.04.009/

[1] T. Bartoszynski On the structure of measurable filters on a countable set, Real Anal. Exch., Volume 17 (1992) no. 2, pp. 681-701

[2] M. Talagrand Mesurabilité, rapidité, propriété de Baire, Stud. Math., Volume LXXIV (1982), pp. 283-291

[3] M. Talagrand Are many small sets explicitly small?, STOCʼ10. Proceedings of the 2010 ACM International Symposium on Theory of Computing, ACM, New York, 2010, pp. 13-35

Cited by Sources:

Comments - Policy