We give a streamlined proof of T. Bartoszynskiʼs characterization of Lebesgue-measurable filters.
Nous donnons une démonstration simplifiée dʼun théorème remarkable de T. Bartoszynski caractérisant les filtres qui sont Lebesgue-mesurables en tant que sous-ensembles de .
Accepted:
Published online:
Michel Talagrand 1
@article{CRMATH_2013__351_7-8_281_0, author = {Michel Talagrand}, title = {On {T.} {Bartoszynski's} structure theorem for measurable filters}, journal = {Comptes Rendus. Math\'ematique}, pages = {281--284}, publisher = {Elsevier}, volume = {351}, number = {7-8}, year = {2013}, doi = {10.1016/j.crma.2013.04.009}, language = {en}, }
Michel Talagrand. On T. Bartoszynskiʼs structure theorem for measurable filters. Comptes Rendus. Mathématique, Volume 351 (2013) no. 7-8, pp. 281-284. doi : 10.1016/j.crma.2013.04.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.04.009/
[1] On the structure of measurable filters on a countable set, Real Anal. Exch., Volume 17 (1992) no. 2, pp. 681-701
[2] Mesurabilité, rapidité, propriété de Baire, Stud. Math., Volume LXXIV (1982), pp. 283-291
[3] Are many small sets explicitly small?, STOCʼ10. Proceedings of the 2010 ACM International Symposium on Theory of Computing, ACM, New York, 2010, pp. 13-35
Cited by Sources:
Comments - Policy