For bounded self-adjoint operators A and B we write if there is a unitary U such that . In [7], Kosaki (1992) has shown that . In this note, we extend this; especially, we show that for a function with positive coefficients , and , . We then apply this to a positive linear map and get a similar inequality.
Pour deux opérateurs autoadjoints bornés A et B, nous écrirons sʼil existe un opérateur unitaire U tel que . Kosaki (1992) a montré dans [7] que . Cette note étend ce résultat. En particulier nous montrons que pour les fonctions du type avec des coefficients , , positifs, on a . Ceci permet dʼobtenir des inégalités similaires pour les applications linéaires positives unitales.
Accepted:
Published online:
Mitsuru Uchiyama 1; Michio Seto 1
@article{CRMATH_2013__351_7-8_285_0, author = {Mitsuru Uchiyama and Michio Seto}, title = {Inequality between unitary orbits}, journal = {Comptes Rendus. Math\'ematique}, pages = {285--288}, publisher = {Elsevier}, volume = {351}, number = {7-8}, year = {2013}, doi = {10.1016/j.crma.2013.04.024}, language = {en}, }
Mitsuru Uchiyama; Michio Seto. Inequality between unitary orbits. Comptes Rendus. Mathématique, Volume 351 (2013) no. 7-8, pp. 285-288. doi : 10.1016/j.crma.2013.04.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.04.024/
[1] On some operator inequalities, Math. Ann., Volume 279 (1987), pp. 157-159
[2] Matrix Analysis, Springer, 1996
[3] Unitary orbits of Hermitian operators with convex or concave functions, Bull. Lond. Math. Soc., Volume 44 (2012), pp. 1085-1102
[4] A Schwarz inequality for positive linear maps on -algebras, Illinois J. Math., Volume 18 (1974), pp. 565-574
[5] Jensenʼs inequality for operators and Löwnerʼs theorem, Math. Ann., Volume 258 (1982), pp. 229-241
[6] A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math., Volume 56 (1952), pp. 494-503
[7] On some trace inequalities, Proc. Centre Math. Appl. Austral. Nat. Univ., Volume 29 (1992), pp. 129-134
[8] On the binary relation on self-adjoint Hilbert space operators, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012), pp. 407-410
[9] A condition under which follows from , Proc. Amer. Math. Soc., Volume 135 (2007) no. 5, pp. 1399-1403
[10] The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice, Proc. Amer. Math. Soc., Volume 28 (1971), pp. 537-544
[11] Commutativity of selfadjoint operators, Pacific J. Math., Volume 161 (1993), pp. 385-392
[12] Perturbation and commutativity of unbounded selfadjoint operators, Bull. Fukuoka Univ. Ed. III, Volume 44 (1995), pp. 15-20
[13] Strong monotonicity of operator functions, Integral Equations Operator Theory, Volume 37 (2000), pp. 95-105
[14] Operator monotone functions which are defined implicitly and operator inequalities, J. Funct. Anal., Volume 175 (2000), pp. 330-347
[15] On some operator monotone functions, Integral Equations Operator Theory, Volume 42 (2002), pp. 243-251
[16] A new majorization between functions, polynomials, and operator inequalities II, J. Math. Soc. Japan, Volume 60 (2008), pp. 291-310
Cited by Sources:
Comments - Policy