We define and study a generalization of Sobol sensitivity indices for the case of a vector output.
Nous définissons et étudions une généralisation des indices de Sobol pour des sorties vectorielles.
Accepted:
Published online:
Fabrice Gamboa 1; Alexandre Janon 2; Thierry Klein 1; Agnès Lagnoux 1
@article{CRMATH_2013__351_7-8_307_0,
author = {Fabrice Gamboa and Alexandre Janon and Thierry Klein and Agn\`es Lagnoux},
title = {Sensitivity indices for multivariate outputs},
journal = {Comptes Rendus. Math\'ematique},
pages = {307--310},
year = {2013},
publisher = {Elsevier},
volume = {351},
number = {7-8},
doi = {10.1016/j.crma.2013.04.016},
language = {en},
}
TY - JOUR AU - Fabrice Gamboa AU - Alexandre Janon AU - Thierry Klein AU - Agnès Lagnoux TI - Sensitivity indices for multivariate outputs JO - Comptes Rendus. Mathématique PY - 2013 SP - 307 EP - 310 VL - 351 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2013.04.016 LA - en ID - CRMATH_2013__351_7-8_307_0 ER -
Fabrice Gamboa; Alexandre Janon; Thierry Klein; Agnès Lagnoux. Sensitivity indices for multivariate outputs. Comptes Rendus. Mathématique, Volume 351 (2013) no. 7-8, pp. 307-310. doi: 10.1016/j.crma.2013.04.016
[1] Asymptotic normality and efficiency of two Sobol index estimators, 2012 (preprint available at) | HAL
[2] Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models, Reliab. Eng. Syst. Saf., Volume 96 (2011) no. 4, pp. 450-459
[3] Sensitivity estimates for nonlinear mathematical models, Math. Model. Comput. Exp., Volume 1 (1993) no. 4, pp. 407-414 (1995)
[4] Asymptotic Statistics, Camb. Ser. Stat. Probab. Math., vol. 3, Cambridge University Press, Cambridge, 1998
Cited by Sources:
Comments - Policy
