We establish the existence of solvable Lie groups of dimension 4 and left-invariant Riemannian metrics with zero Bach tensor which are neither conformally Einstein nor half conformally flat.
Nous montrons lʼexistence de groupes de Lie résolubles de dimension 4 et de métriques riemanniennes invariantes à gauche, dont le tenseur de Bach est nul et qui ne sont ni conformément Einstein, ni semi-conformément plates.
Accepted:
Published online:
Elsa Abbena 1; Sergio Garbiero 1; Simon Salamon 2
@article{CRMATH_2013__351_7-8_303_0, author = {Elsa Abbena and Sergio Garbiero and Simon Salamon}, title = {Bach-flat {Lie} groups in dimension 4}, journal = {Comptes Rendus. Math\'ematique}, pages = {303--306}, publisher = {Elsevier}, volume = {351}, number = {7-8}, year = {2013}, doi = {10.1016/j.crma.2013.04.011}, language = {en}, }
Elsa Abbena; Sergio Garbiero; Simon Salamon. Bach-flat Lie groups in dimension 4. Comptes Rendus. Mathématique, Volume 351 (2013) no. 7-8, pp. 303-306. doi : 10.1016/j.crma.2013.04.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.04.011/
[1] Ambitoric geometry I: Einstein metrics and extremal ambikähler structures | arXiv
[2] Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs, Math. Z., Volume 9 (1921), pp. 110-135
[3] Hypercomplex structures on four-dimensional Lie groups, Proc. Am. Math. Soc., Volume 125 (1997), pp. 1043-1054
[4] Les espaces homogènes riemanniens de dimension 4, Paris, 1978/1979 (Textes Math.), Volume vol. 3, CEDIC, Paris (1981), pp. 40-60
[5] Einstein Manifolds, Springer-Verlag, Berlin, 1986
[6] Bach-flat gradient steady Ricci solitons | arXiv
[7] Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compos. Math., Volume 49 (1983), pp. 405-433
[8] Anti-self-dual metrics on Lie groups, Contemp. Math., Volume 308 (2002), pp. 63-75
[9] Homogeneous Einstein spaces of dimension four, J. Differ. Geom., Volume 3 (1969), pp. 309-349
[10] Conformal Einstein spaces, Gen. Relativ. Gravit., Volume 17 (1985), pp. 343-352
[11] Conformal Einstein spaces in N-dimensions, Ann. Glob. Anal. Geom., Volume 20 (2001), pp. 183-197
[12] Invariant strong KT geometry on four-dimensional solvable Lie groups, J. Lie Theory, Volume 21 (2011), pp. 55-70
[13] Curvature of left invariant metrics on Lie groups, Adv. Math., Volume 21 (1976), pp. 293-329
[14] Non-vacuum twisting type-N metrics, Class. Quantum Gravity, Volume 18 (2001), pp. 341-351
[15] Non-trivial solutions of the Bach equation exist, Ann. Phys., Volume 41 (1984), pp. 435-436
[16] Bach-flat asymptotically locally Euclidean metrics, Invent. Math., Volume 160 (2005), pp. 357-415
Cited by Sources:
Comments - Policy