[Décompositions coalitionnelles de paramètres d’intérêt]
La compréhension du comportement d’un modèle boîte-noire, dont les entrées distribuées aléatoirement, peut s’appuyer sur la décomposition d’un paramètre d’intérêt (par exemple sa variance) en contributions allouées à chaque coalition d’entrées du modèle (i.e., sous-ensembles des entrées d’un modèle). Dans cet article, sous des hypothèses peu restrictives, nous obtenons des décompositions univoques et interprétables de quantités d’intérêt très générales. Ces résultats nous permettent notamment de retrouver des résultats connus, mais en allégeant leurs hypothèses.
Understanding the behavior of a black-box model with probabilistic inputs can be based on the decomposition of a parameter of interest (e.g., its variance) into contributions attributed to each coalition of inputs (i.e., subsets of inputs). In this paper, we produce conditions for obtaining unambiguous and interpretable decompositions of very general parameters of interest. This allows recovering known decompositions, holding under weaker assumptions than the literature states.
Accepté le :
Publié le :
Marouane Il Idrissi 1, 2, 3 ; Nicolas Bousquet 1, 3, 4 ; Fabrice Gamboa 2 ; Bertrand Iooss 1, 3, 2 ; Jean-Michel Loubes 2
@article{CRMATH_2023__361_G10_1653_0, author = {Marouane Il Idrissi and Nicolas Bousquet and Fabrice Gamboa and Bertrand Iooss and Jean-Michel Loubes}, title = {On the coalitional decomposition of parameters of interest}, journal = {Comptes Rendus. Math\'ematique}, pages = {1653--1662}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.521}, language = {en}, }
TY - JOUR AU - Marouane Il Idrissi AU - Nicolas Bousquet AU - Fabrice Gamboa AU - Bertrand Iooss AU - Jean-Michel Loubes TI - On the coalitional decomposition of parameters of interest JO - Comptes Rendus. Mathématique PY - 2023 SP - 1653 EP - 1662 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.521 LA - en ID - CRMATH_2023__361_G10_1653_0 ER -
%0 Journal Article %A Marouane Il Idrissi %A Nicolas Bousquet %A Fabrice Gamboa %A Bertrand Iooss %A Jean-Michel Loubes %T On the coalitional decomposition of parameters of interest %J Comptes Rendus. Mathématique %D 2023 %P 1653-1662 %V 361 %I Académie des sciences, Paris %R 10.5802/crmath.521 %G en %F CRMATH_2023__361_G10_1653_0
Marouane Il Idrissi; Nicolas Bousquet; Fabrice Gamboa; Bertrand Iooss; Jean-Michel Loubes. On the coalitional decomposition of parameters of interest. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1653-1662. doi : 10.5802/crmath.521. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.521/
[1] Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI, Inf. Fusion, Volume 58 (2020), pp. 82-115 | DOI
[2] Fairness seen as global sensitivity analysis, Mach. Learn. (2022) | DOI
[3] Reproducing Kernel Hilbert Spaces in Probability and Statistics, Springer, 2004 | DOI | Zbl
[4] Cooperative Games on Combinatorial Structures, Theory and Decision Library, 26, Springer, 2000 | DOI | MR
[5] Probability, Classics in Applied Mathematics, 7, Society for Industrial and Applied Mathematics, 1992 | DOI
[6] Kernel-based ANOVA decomposition and Shapley effects - Application to global sensitivity analysis (2021) (working paper or preprint)
[7] Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis, Adv. Neural Inf. Process. Syst., Volume 34 (2021), pp. 26005-26014
[8] Sensitivity indices for multivariate outputs, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 7-8, pp. 307-310 | DOI | Numdam | MR | Zbl
[9] A simplified bargaining model for the -person cooperative game, Int. Econ. Rev., Volume 4 (1963) no. 2, pp. 194-220 | DOI | Zbl
[10] A class of statistics with asymptotically normal distribution, Ann. Math. Stat., Volume 19 (1948) no. 3, pp. 293-325 | DOI | MR | Zbl
[11] Different Views of Interpretability, Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches, Springer, 2022, pp. 1-20 | DOI
[12] From Möbius inversion to renormalisation, Commun. Number Theory Phys., Volume 14 (2020) no. 1, pp. 171-198 | DOI | Zbl
[13] Combinatorics: the Rota way, Cambridge Mathematical Library, Cambridge University Press, 2012
[14] Über eine besondere Art der Umkehrung der Reihen, J. Reine Angew. Math., Volume 9 (1832), pp. 105-123 | Zbl
[15] On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 2 (1964) no. 4, pp. 340-368 | DOI | Zbl
[16] Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simul., Volume 55 (2001) no. 1-3, pp. 271-280 | DOI | MR | Zbl
[17] Incidence algebras, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, 1997 no. 206
[18] Basics and trends in sensitivity analysis. Theory and practice in R, Computational Science & Engineering, 23, Society for Industrial and Applied Mathematics, 2021
Cité par Sources :
Commentaires - Politique