Comptes Rendus
Mathematical Analysis
A Beurling type theorem in weighted Bergman spaces
[Un théorème de type Beurling dans des espaces de Bergman pondérés]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 433-436.

For the vector-valued Hardy space H2(U) and the standard weighted Bergman space An(Y) with coefficient Hilbert spaces U and Y, we single out a class of contractive multipliers from H2(U) to An(Y) which we call partially isometric multipliers. We then show that a closed subspace MAn(Y) is invariant under the shift operator Sn:f(z)zf(z) if and only if M=ΦH2(U) for some partially isometric multiplier Φ from H2(U) to An(Y).

Soit H2(U) lʼespace de Hardy aux valeurs vectorielles et soit An(Y) lʼespace de Bergman aux valeurs vectorielles et au poids (1|z|2)n2, où les espaces des coefficients U et Y sont des espaces de Hilbert. Nous considérons une classe de multiplicateurs contractifs de H2(U) dans An(Y), que nous appelons multiplicateurs isométriques partiels. Nous montrons quʼun sous-espace MAn(Y) qui est invariant pour lʼoperateur Sn:f(z)zf(z) est inclus isometriquement dans An(Y) si et seulement si M=ΦH2(U) pour un multiplicateur isométrique partiel Φ de H2(U) dans An(Y).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.06.004

Joseph A. Ball 1 ; Vladimir Bolotnikov 2

1 Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
2 Department of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795, USA
@article{CRMATH_2013__351_11-12_433_0,
     author = {Joseph A. Ball and Vladimir Bolotnikov},
     title = {A {Beurling} type theorem in weighted {Bergman} spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {433--436},
     publisher = {Elsevier},
     volume = {351},
     number = {11-12},
     year = {2013},
     doi = {10.1016/j.crma.2013.06.004},
     language = {en},
}
TY  - JOUR
AU  - Joseph A. Ball
AU  - Vladimir Bolotnikov
TI  - A Beurling type theorem in weighted Bergman spaces
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 433
EP  - 436
VL  - 351
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2013.06.004
LA  - en
ID  - CRMATH_2013__351_11-12_433_0
ER  - 
%0 Journal Article
%A Joseph A. Ball
%A Vladimir Bolotnikov
%T A Beurling type theorem in weighted Bergman spaces
%J Comptes Rendus. Mathématique
%D 2013
%P 433-436
%V 351
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2013.06.004
%G en
%F CRMATH_2013__351_11-12_433_0
Joseph A. Ball; Vladimir Bolotnikov. A Beurling type theorem in weighted Bergman spaces. Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 433-436. doi : 10.1016/j.crma.2013.06.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.06.004/

[1] J. Agler Hypercontractions and subnormality, J. Oper. Theory, Volume 13 (1985) no. 2, pp. 203-217

[2] A. Aleman; S. Richter; C. Sundberg Beurlingʼs theorem for the Bergman space, Acta Math., Volume 177 (1996), pp. 275-310

[3] J.A. Ball; V. Bolotnikov Weighted Bergman spaces: shift-invariant subspaces and input/state/output linear systems, Integral Equ. Oper. Theory, Volume 76 (2013), pp. 301-356

[4] A. Beurling On two problems concerning linear transformations in Hilbert space, Acta Math., Volume 81 (1949), pp. 239-255

[5] P.R. Halmos Shifts on Hilbert spaces, J. Reine Angew. Math., Volume 208 (1961), pp. 102-112

[6] H. Hedenmalm; Y.G. Perdomo Mean value surfaces with prescribed curvature form, J. Math. Pures Appl., Volume 83 (2004), pp. 1075-1107

[7] S. McCullough; T.T. Trent Invariant subspaces and Nevanlinna–Pick kernels, J. Funct. Anal., Volume 178 (2000), pp. 226-249

[8] A. Olofsson A characteristic operator function for the class of n-hypercontractions, J. Funct. Anal., Volume 236 (2006), pp. 517-545

[9] S. Shimorin On Beurling-type theorems in weighted 2 and Bergman spaces, Proc. Amer. Math. Soc., Volume 131 (2003) no. 6, pp. 1777-1787

  • Caixing Gu; Shuaibing Luo; Pan Ma Beurling type invariant subspaces on Hardy and Bergman spaces of the unit ball or polydisk, Canadian Mathematical Bulletin, Volume 68 (2025) no. 1, pp. 232-245 | DOI:10.4153/s0008439524000535 | Zbl:7990580
  • Gelu Popescu Noncommutative domains, universal operator models, and operator algebras, Journal of Operator Theory, Volume 93 (2025) no. 1, pp. 37-89 | DOI:10.7900/jot.2022nov17.2407 | Zbl:8052251
  • Gelu Popescu Noncommutative domains, universal operator models, and operator algebras. II., Journal of Operator Theory, Volume 93 (2025) no. 2, pp. 315-354 | DOI:10.7900/jot.2023mar02.2408 | Zbl:8053229
  • Caixing Gu; Shuaibing Luo Analytic representations of backward shifts on weighted Bergman and Dirichlet spaces, Journal of Mathematical Analysis and Applications, Volume 539 (2024) no. 1, p. 21 (Id/No 128502) | DOI:10.1016/j.jmaa.2024.128502 | Zbl:7922118
  • Gelu Popescu Noncommutative varieties, universal operator models, and operator algebras, Journal of Operator Theory, Volume 90 (2023) no. 1, pp. 91-170 | DOI:10.7900/jot.2021oct12.2377 | Zbl:8049494
  • Gelu Popescu Operator theory on noncommutative polydomains. I, Multivariable operator theory. The Jörg Eschmeier memorial volume, Cham: Birkhäuser, 2023, pp. 621-721 | DOI:10.1007/978-3-031-50535-5_25 | Zbl:7918455
  • Joseph A. Ball; Vladimir Bolotnikov Multivariable Beurling-Lax representations: the commutative and free noncommutative settings, Acta Scientiarum Mathematicarum, Volume 88 (2022) no. 1-2, pp. 5-52 | DOI:10.1007/s44146-022-00010-5 | Zbl:1516.47017
  • Gelu Popescu Operator theory on noncommutative polydomains. I, Complex Analysis and Operator Theory, Volume 16 (2022) no. 4, p. 101 (Id/No 50) | DOI:10.1007/s11785-022-01225-8 | Zbl:1516.47024
  • Baruch Solel Invariant subspaces for certain tuples of operators with applications to reproducing kernel correspondences, Integral Equations and Operator Theory, Volume 92 (2020) no. 4, p. 22 (Id/No 38) | DOI:10.1007/s00020-020-02596-3 | Zbl:1450.30071
  • Raphaël Clouâtre; Michael Hartz; Dominik Schillo A Beurling-Lax-Halmos theorem for spaces with a complete Nevanlinna-Pick factor, Proceedings of the American Mathematical Society, Volume 148 (2020) no. 2, pp. 731-740 | DOI:10.1090/proc/14736 | Zbl:1491.47009
  • Gelu Popescu Noncommutative hyperballs, wandering subspaces, and inner functions, Journal of Functional Analysis, Volume 276 (2019) no. 11, pp. 3406-3440 | DOI:10.1016/j.jfa.2019.03.013 | Zbl:1476.47007
  • Jörg Eschmeier Bergman inner functions and m-hypercontractions, Journal of Functional Analysis, Volume 275 (2018) no. 1, pp. 73-102 | DOI:10.1016/j.jfa.2017.10.018 | Zbl:1483.47016
  • Gelu Popescu Invariant subspaces and operator model theory on noncommutative varieties, Mathematische Annalen, Volume 372 (2018) no. 1-2, pp. 611-650 | DOI:10.1007/s00208-018-1714-8 | Zbl:1460.47005
  • M. Bhattacharjee; J. Eschmeier; Dinesh K. Keshari; Jaydeb Sarkar Dilations, wandering subspaces, and inner functions, Linear Algebra and its Applications, Volume 523 (2017), pp. 263-280 | DOI:10.1016/j.laa.2017.02.032 | Zbl:6766346
  • Jaydeb Sarkar An invariant subspace theorem and invariant subspaces of analytic reproducing kernel Hilbert spaces. II, Complex Analysis and Operator Theory, Volume 10 (2016) no. 4, pp. 769-782 | DOI:10.1007/s11785-015-0501-8 | Zbl:1346.32004
  • Monojit Bhattacharjee; Jaydeb Sarkar Operator positivity and analytic models of commuting tuples of operators, Studia Mathematica, Volume 232 (2016) no. 2, pp. 155-171 | DOI:10.4064/sm8437-2-2016 | Zbl:1385.47007
  • Jaydeb Sarkar An introduction to Hilbert module approach to multivariable operator theory, Operator theory. In 2 volumes, Basel: Springer, 2015, pp. 969-1033 | DOI:10.1007/978-3-0348-0667-1_59 | Zbl:1372.47008
  • Jaydeb Sarkar An Introduction to Hilbert Module Approach to Multivariable Operator Theory, Operator Theory (2014), p. 1 | DOI:10.1007/978-3-0348-0692-3_59-1

Cité par 18 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: