Comptes Rendus
Mathematical Analysis/Differential Geometry
Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spectral estimates
Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 437-440.

This note is devoted to optimal spectral estimates for Schrödinger operators on compact connected Riemannian manifolds without boundary. These estimates are based on the use of appropriate interpolation inequalities and on some recent rigidity results for nonlinear elliptic equations on those manifolds.

Cette note est consacrée à des estimations spectrales optimales pour des opérateurs de Schrödinger sur des variétés riemaniennes compactes et simplement connexes, sans bord. Ces estimations sont basées sur certaines inégalités dʼinterpolation et sur un résultat récent de rigidité pour des équations elliptiques non linéaires sur ces variétés.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.06.014

Jean Dolbeault 1; Maria J. Esteban 1; Ari Laptev 2; Michael Loss 3

1 Ceremade (UMR CNRS 7534), Université Paris-Dauphine, place du Maréchal-de-Lattre-de-Tassigny, 75775 Paris cedex 16, France
2 Department of Mathematics, Imperial College London, Huxley Building, 180 Queenʼs Gate, SW7 2AZ, UK
3 School of Mathematics, Skiles Building, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA
@article{CRMATH_2013__351_11-12_437_0,
     author = {Jean Dolbeault and Maria J. Esteban and Ari Laptev and Michael Loss},
     title = {Spectral properties of {Schr\"odinger} operators on compact manifolds: {Rigidity,} flows, interpolation and spectral estimates},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {437--440},
     publisher = {Elsevier},
     volume = {351},
     number = {11-12},
     year = {2013},
     doi = {10.1016/j.crma.2013.06.014},
     language = {en},
}
TY  - JOUR
AU  - Jean Dolbeault
AU  - Maria J. Esteban
AU  - Ari Laptev
AU  - Michael Loss
TI  - Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spectral estimates
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 437
EP  - 440
VL  - 351
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2013.06.014
LA  - en
ID  - CRMATH_2013__351_11-12_437_0
ER  - 
%0 Journal Article
%A Jean Dolbeault
%A Maria J. Esteban
%A Ari Laptev
%A Michael Loss
%T Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spectral estimates
%J Comptes Rendus. Mathématique
%D 2013
%P 437-440
%V 351
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2013.06.014
%G en
%F CRMATH_2013__351_11-12_437_0
Jean Dolbeault; Maria J. Esteban; Ari Laptev; Michael Loss. Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spectral estimates. Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 437-440. doi : 10.1016/j.crma.2013.06.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.06.014/

[1] D. Bakry; M. Ledoux Sobolev inequalities and Myersʼs diameter theorem for an abstract Markov generator, Duke Math. J., Volume 85 (1996), pp. 253-270

[2] M.-F. Bidaut-Véron; L. Véron Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., Volume 106 (1991), pp. 489-539

[3] J. Dolbeault; M.J. Esteban; M. Kowalczyk; M. Loss Sharp interpolation inequalities on the sphere: New methods and consequences, Chin. Ann. Math. Ser. B, Volume 34 (2013), pp. 99-112

[4] J. Dolbeault; M.J. Esteban; A. Laptev Spectral estimates on the sphere, Anal. Partial Differ. Equ. (2013) (in press, preprint hal-00770755)

[5] J. Dolbeault, M.J. Esteban, M. Loss, Nonlinear flows and rigidity results on compact manifolds, preprint hal-00784887.

[6] B. Gidas; J. Spruck Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., Volume 34 (1981), pp. 525-598

[7] E. Hebey Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University Courant Institute of Mathematical Sciences, New York, 1999

[8] J.R. Licois; L. Véron A class of nonlinear conservative elliptic equations in cylinders, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4), Volume 26 (1998), pp. 249-283

[9] J.R. Licois; L. Véron Un théorème dʼannulation pour deséquations elliptiques non linéaires sur des variétés riemanniennes compactes, C. R. Acad. Sci. Paris, Ser. I, Volume 320 (1995), pp. 1337-1342

Cited by Sources:

Comments - Policy