For the vector-valued Hardy space and the standard weighted Bergman space with coefficient Hilbert spaces and , we single out a class of contractive multipliers from to which we call partially isometric multipliers. We then show that a closed subspace is invariant under the shift operator if and only if for some partially isometric multiplier Φ from to .
Soit lʼespace de Hardy aux valeurs vectorielles et soit lʼespace de Bergman aux valeurs vectorielles et au poids , où les espaces des coefficients et sont des espaces de Hilbert. Nous considérons une classe de multiplicateurs contractifs de dans , que nous appelons multiplicateurs isométriques partiels. Nous montrons quʼun sous-espace qui est invariant pour lʼoperateur est inclus isometriquement dans si et seulement si pour un multiplicateur isométrique partiel Φ de dans .
Accepted:
Published online:
Joseph A. Ball 1; Vladimir Bolotnikov 2
@article{CRMATH_2013__351_11-12_433_0, author = {Joseph A. Ball and Vladimir Bolotnikov}, title = {A {Beurling} type theorem in weighted {Bergman} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {433--436}, publisher = {Elsevier}, volume = {351}, number = {11-12}, year = {2013}, doi = {10.1016/j.crma.2013.06.004}, language = {en}, }
Joseph A. Ball; Vladimir Bolotnikov. A Beurling type theorem in weighted Bergman spaces. Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 433-436. doi : 10.1016/j.crma.2013.06.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.06.004/
[1] Hypercontractions and subnormality, J. Oper. Theory, Volume 13 (1985) no. 2, pp. 203-217
[2] Beurlingʼs theorem for the Bergman space, Acta Math., Volume 177 (1996), pp. 275-310
[3] Weighted Bergman spaces: shift-invariant subspaces and input/state/output linear systems, Integral Equ. Oper. Theory, Volume 76 (2013), pp. 301-356
[4] On two problems concerning linear transformations in Hilbert space, Acta Math., Volume 81 (1949), pp. 239-255
[5] Shifts on Hilbert spaces, J. Reine Angew. Math., Volume 208 (1961), pp. 102-112
[6] Mean value surfaces with prescribed curvature form, J. Math. Pures Appl., Volume 83 (2004), pp. 1075-1107
[7] Invariant subspaces and Nevanlinna–Pick kernels, J. Funct. Anal., Volume 178 (2000), pp. 226-249
[8] A characteristic operator function for the class of n-hypercontractions, J. Funct. Anal., Volume 236 (2006), pp. 517-545
[9] On Beurling-type theorems in weighted and Bergman spaces, Proc. Amer. Math. Soc., Volume 131 (2003) no. 6, pp. 1777-1787
Cited by Sources:
Comments - Policy