Comptes Rendus
Combinatorics
Strict unimodality of q-binomial coefficients
[Lʼunimodalité stricte des coefficients q-binomiaux]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 415-418.

We prove the strict unimodality of the q-binomial coefficients (nk)q as polynomials in q. The proof is based on the combinatorics of certain Young tableaux and the semigroup property of Kronecker coefficients of Sn representations.

Nous prouvons lʼunimodalité stricte des coefficients q-binomiaux (nk)q comme polynômes en q. La preuve est basée sur la combinatoire de certains tableaux de Young et la propriété du semi-groupe des coefficients de Kronecker des représentations de Sn.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.06.008

Igor Pak 1 ; Greta Panova 1

1 Department of Mathematics, UCLA, Los Angeles, CA 90095, USA
@article{CRMATH_2013__351_11-12_415_0,
     author = {Igor Pak and Greta Panova},
     title = {Strict unimodality of \protect\emph{q}-binomial coefficients},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {415--418},
     publisher = {Elsevier},
     volume = {351},
     number = {11-12},
     year = {2013},
     doi = {10.1016/j.crma.2013.06.008},
     language = {en},
}
TY  - JOUR
AU  - Igor Pak
AU  - Greta Panova
TI  - Strict unimodality of q-binomial coefficients
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 415
EP  - 418
VL  - 351
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2013.06.008
LA  - en
ID  - CRMATH_2013__351_11-12_415_0
ER  - 
%0 Journal Article
%A Igor Pak
%A Greta Panova
%T Strict unimodality of q-binomial coefficients
%J Comptes Rendus. Mathématique
%D 2013
%P 415-418
%V 351
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2013.06.008
%G en
%F CRMATH_2013__351_11-12_415_0
Igor Pak; Greta Panova. Strict unimodality of q-binomial coefficients. Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 415-418. doi : 10.1016/j.crma.2013.06.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.06.008/

[1] F. Brenti (Mem. Am. Math. Soc.), Volume vol. 413 (1989), p. 106

[2] F. Brenti Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Contemp. Math., vol. 178, AMS, Providence, RI, 1994, pp. 71-89

[3] M. Christandl; A.W. Harrow; G. Mitchison Nonzero Kronecker coefficients and what they tell us about spectra, Commun. Math. Phys., Volume 270 (2007), pp. 575-585

[4] A.N. Kirillov Unimodality of generalized Gaussian coefficients, C. R. Acad. Sci. Paris, Ser. I, Volume 315 (1992) no. 5, pp. 497-501

[5] A.N. Kirillov An invitation to the generalized saturation conjecture, Publ. RIMS, Volume 40 (2004), pp. 1147-1239

[6] B. Lindström A partition of L(3,n) into saturated symmetric chains, Eur. J. Comb., Volume 1 (1980), pp. 61-63

[7] I.G. Macdonald An elementary proof of a q-binomial identity, q-Series and Partitions, Inst. Math. and Its Appl., vol. 18, Springer, New York, 1989, pp. 73-75

[8] I.G. Macdonald Symmetric Functions and Hall Polynomials, Oxford University Press, New York, 1995

[9] L. Manivel On rectangular Kronecker coefficients, J. Algebr. Comb., Volume 33 (2011), pp. 153-162

[10] H. Mizukawa; H.-F. Yamada Rectangular Schur functions and the basic representation of affine Lie algebras, Discrete Math., Volume 298 (2005), pp. 285-300

[11] K.M. OʼHara Unimodality of Gaussian coefficients: a constructive proof, J. Comb. Theory, Ser. A, Volume 53 (1990), pp. 29-52

[12] I. Pak; G. Panova Unimodality via Kronecker products | arXiv

[13] I. Pak; G. Panova; E. Vallejo Kronecker products, characters, partitions, and the tensor square conjectures | arXiv

[14] M. Reid Klarner systems and tiling boxes with polyominoes, J. Comb. Theory, Ser. A, Volume 111 (2005), pp. 89-105

[15] R.P. Stanley Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. N.Y. Acad. Sci., vol. 576, New York Acad. Sci., New York, 1989, pp. 500-535

[16] R.P. Stanley Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, 1999

[17] J.J. Sylvester Proof of the hitherto undemonstrated Fundamental Theorem of Invariants, Philos. Mag. (Coll. Math. Papers), Volume 5 (1878), pp. 178-188 http://tinyurl.com/c94pphj (reprinted, vol. 3, 1973, pp. 117-126 available at)

[18] E. Vallejo, Kronecker squares of complex Sn characters and Littlewood–Richardson multi-tableaux, preprint.

[19] D.B. West A symmetric chain decomposition of L(4,n), Eur. J. Comb., Volume 1 (1980), pp. 379-383

[20] D. Zeilberger Kathy OʼHaraʼs constructive proof of the unimodality of the Gaussian polynomials, Am. Math. Mon., Volume 96 (1989), pp. 590-602

[21] A. Zelevinsky Littlewood–Richardson semigroups, New Perspectives in Algebraic Combinatorics, Cambridge University Press, Cambridge, 1999, pp. 337-345

  • Igor Pak; Colleen Robichaux Signed combinatorial interpretations in algebraic combinatorics, Algebraic Combinatorics, Volume 8 (2025) no. 2, p. 495 | DOI:10.5802/alco.413
  • Chenchen Zhao On the Kronecker product of Schur functions of square shapes, Algebraic Combinatorics, Volume 7 (2024) no. 5, p. 1575 | DOI:10.5802/alco.381
  • Tewodros Amdeberhan; Stephan Wagner The MacMahon q-Catalan is Convex, Annals of Combinatorics, Volume 28 (2024) no. 3, p. 1003 | DOI:10.1007/s00026-023-00677-9
  • Christian Ikenmeyer; Igor Pak; Greta Panova Positivity of the Symmetric Group Characters Is as Hard as the Polynomial Time Hierarchy, International Mathematics Research Notices, Volume 2024 (2024) no. 10, p. 8442 | DOI:10.1093/imrn/rnad273
  • V. M. Buchstaber; F. Yu. Popelensky Cohomology of the Heisenberg Manifold Sequence, Journal of Mathematical Sciences, Volume 284 (2024) no. 1, p. 17 | DOI:10.1007/s10958-024-07326-3
  • Igor Pak What is a combinatorial interpretation?, Open Problems in Algebraic Combinatorics, Volume 110 (2024), p. 191 | DOI:10.1090/pspum/110/02007
  • Greta Panova Complexity and asymptotics of structure constants, Open Problems in Algebraic Combinatorics, Volume 110 (2024), p. 61 | DOI:10.1090/pspum/110/02016
  • Christoph Koutschan; Ali Kemal Uncu; Elaine Wong, Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation (2023), p. 434 | DOI:10.1145/3597066.3597113
  • Janet J. W. Dong; Kathy Q. Ji Unimodality of partition polynomials related to Borwein’s conjecture, The Ramanujan Journal, Volume 61 (2023) no. 4, p. 1063 | DOI:10.1007/s11139-023-00721-5
  • William Y. C. Chen; Ivy D. D. Jia Semi-invariants of binary forms and Sylvester’s theorem, The Ramanujan Journal, Volume 59 (2022) no. 1, p. 297 | DOI:10.1007/s11139-021-00505-9
  • William Y. C. Chen; Ivy D. D. Jia Semi-invariants of binary forms pertaining to a unimodality theorem of Reiner and Stanton, International Journal of Mathematics, Volume 32 (2021) no. 12 | DOI:10.1142/s0129167x21400036
  • Anatol N. Kirillov Rigged Configurations and Unimodality, Representation Theory, Mathematical Physics, and Integrable Systems, Volume 340 (2021), p. 453 | DOI:10.1007/978-3-030-78148-4_16
  • Manabu Hagiwara; Justin Kong Applications of Gaussian Binomials to Coding Theory for Deletion Error Correction, Annals of Combinatorics, Volume 24 (2020) no. 2, p. 379 | DOI:10.1007/s00026-020-00494-4
  • Julian Dörfler; Christian Ikenmeyer; Greta Panova On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions, SIAM Journal on Applied Algebra and Geometry, Volume 4 (2020) no. 2, p. 354 | DOI:10.1137/19m1287638
  • Stephen Melczer; Greta Panova; Robin Pemantle Counting Partitions inside a Rectangle, SIAM Journal on Discrete Mathematics, Volume 34 (2020) no. 4, p. 2388 | DOI:10.1137/20m1315828
  • Angelica Castillo; Stephanie Flores; Anabel Hernandez; Brandt Kronholm; Acadia Larsen; Arturo Martinez Quasipolynomials and Maximal Coefficients of Gaussian Polynomials, Annals of Combinatorics, Volume 23 (2019) no. 3-4, p. 589 | DOI:10.1007/s00026-019-00467-2
  • A. M. Vershik; A. V. Malyutin Asymptotics of the Number of Geodesics in the Discrete Heisenberg Group, Journal of Mathematical Sciences, Volume 240 (2019) no. 5, p. 525 | DOI:10.1007/s10958-019-04370-2
  • Jehanne Dousse; Byungchan Kim An overpartition analogue of q-binomial coefficients, II: Combinatorial proofs and (q,t)-log concavity, Journal of Combinatorial Theory, Series A, Volume 158 (2018), p. 228 | DOI:10.1016/j.jcta.2018.03.011
  • Zhiyun Cheng; Sujoy Mukherjee; Józef H. Przytycki; Xiao Wang; Seung Yeop Yang Strict unimodality of plucking polynomials of rooted trees, Journal of Knot Theory and Its Ramifications, Volume 27 (2018) no. 07, p. 1841009 | DOI:10.1142/s0218216518410092
  • Fulvio Gesmundo; Christian Ikenmeyer; Greta Panova Geometric complexity theory and matrix powering, Differential Geometry and its Applications, Volume 55 (2017), p. 106 | DOI:10.1016/j.difgeo.2017.07.001
  • Igor Pak; Greta Panova Bounds on certain classes of Kronecker and q-binomial coefficients, Journal of Combinatorial Theory, Series A, Volume 147 (2017), p. 1 | DOI:10.1016/j.jcta.2016.10.004
  • Richard P. Stanley; Fabrizio Zanello Some Asymptotic Results on q-Binomial Coefficients, Annals of Combinatorics, Volume 20 (2016) no. 3, p. 623 | DOI:10.1007/s00026-016-0319-8
  • Peter Bürgisser; Christian Ikenmeyer; Jesko Hüttenhain Permanent versus determinant: Not via saturations, Proceedings of the American Mathematical Society, Volume 145 (2016) no. 3, p. 1247 | DOI:10.1090/proc/13310
  • Vasu V. Tewari Kronecker coefficients for some near-rectangular partitions, Journal of Algebra, Volume 429 (2015), p. 287 | DOI:10.1016/j.jalgebra.2015.01.018
  • Vivek Dhand A combinatorial proof of strict unimodality for q-binomial coefficients, Discrete Mathematics, Volume 335 (2014), p. 20 | DOI:10.1016/j.disc.2014.07.001
  • Igor Pak; Greta Panova Unimodality via Kronecker products, Journal of Algebraic Combinatorics, Volume 40 (2014) no. 4, p. 1103 | DOI:10.1007/s10801-014-0520-y
  • Ernesto Vallejo A diagrammatic approach to Kronecker squares, Journal of Combinatorial Theory, Series A, Volume 127 (2014), p. 243 | DOI:10.1016/j.jcta.2014.06.002

Cité par 27 documents. Sources : Crossref

Commentaires - Politique