[Lʼunimodalité stricte des coefficients q-binomiaux]
We prove the strict unimodality of the q-binomial coefficients
Nous prouvons lʼunimodalité stricte des coefficients q-binomiaux
Accepté le :
Publié le :
Igor Pak 1 ; Greta Panova 1
@article{CRMATH_2013__351_11-12_415_0, author = {Igor Pak and Greta Panova}, title = {Strict unimodality of \protect\emph{q}-binomial coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {415--418}, publisher = {Elsevier}, volume = {351}, number = {11-12}, year = {2013}, doi = {10.1016/j.crma.2013.06.008}, language = {en}, }
Igor Pak; Greta Panova. Strict unimodality of q-binomial coefficients. Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 415-418. doi : 10.1016/j.crma.2013.06.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.06.008/
[1] (Mem. Am. Math. Soc.), Volume vol. 413 (1989), p. 106
[2] Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Contemp. Math., vol. 178, AMS, Providence, RI, 1994, pp. 71-89
[3] Nonzero Kronecker coefficients and what they tell us about spectra, Commun. Math. Phys., Volume 270 (2007), pp. 575-585
[4] Unimodality of generalized Gaussian coefficients, C. R. Acad. Sci. Paris, Ser. I, Volume 315 (1992) no. 5, pp. 497-501
[5] An invitation to the generalized saturation conjecture, Publ. RIMS, Volume 40 (2004), pp. 1147-1239
[6] A partition of
[7] An elementary proof of a q-binomial identity, q-Series and Partitions, Inst. Math. and Its Appl., vol. 18, Springer, New York, 1989, pp. 73-75
[8] Symmetric Functions and Hall Polynomials, Oxford University Press, New York, 1995
[9] On rectangular Kronecker coefficients, J. Algebr. Comb., Volume 33 (2011), pp. 153-162
[10] Rectangular Schur functions and the basic representation of affine Lie algebras, Discrete Math., Volume 298 (2005), pp. 285-300
[11] Unimodality of Gaussian coefficients: a constructive proof, J. Comb. Theory, Ser. A, Volume 53 (1990), pp. 29-52
[12] Unimodality via Kronecker products | arXiv
[13] Kronecker products, characters, partitions, and the tensor square conjectures | arXiv
[14] Klarner systems and tiling boxes with polyominoes, J. Comb. Theory, Ser. A, Volume 111 (2005), pp. 89-105
[15] Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. N.Y. Acad. Sci., vol. 576, New York Acad. Sci., New York, 1989, pp. 500-535
[16] Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, 1999
[17] Proof of the hitherto undemonstrated Fundamental Theorem of Invariants, Philos. Mag. (Coll. Math. Papers), Volume 5 (1878), pp. 178-188 http://tinyurl.com/c94pphj (reprinted, vol. 3, 1973, pp. 117-126 available at)
[18] E. Vallejo, Kronecker squares of complex
[19] A symmetric chain decomposition of
[20] Kathy OʼHaraʼs constructive proof of the unimodality of the Gaussian polynomials, Am. Math. Mon., Volume 96 (1989), pp. 590-602
[21] Littlewood–Richardson semigroups, New Perspectives in Algebraic Combinatorics, Cambridge University Press, Cambridge, 1999, pp. 337-345
- Signed combinatorial interpretations in algebraic combinatorics, Algebraic Combinatorics, Volume 8 (2025) no. 2, p. 495 | DOI:10.5802/alco.413
- On the Kronecker product of Schur functions of square shapes, Algebraic Combinatorics, Volume 7 (2024) no. 5, p. 1575 | DOI:10.5802/alco.381
- The MacMahon q-Catalan is Convex, Annals of Combinatorics, Volume 28 (2024) no. 3, p. 1003 | DOI:10.1007/s00026-023-00677-9
- Positivity of the Symmetric Group Characters Is as Hard as the Polynomial Time Hierarchy, International Mathematics Research Notices, Volume 2024 (2024) no. 10, p. 8442 | DOI:10.1093/imrn/rnad273
- Cohomology of the Heisenberg Manifold Sequence, Journal of Mathematical Sciences, Volume 284 (2024) no. 1, p. 17 | DOI:10.1007/s10958-024-07326-3
- What is a combinatorial interpretation?, Open Problems in Algebraic Combinatorics, Volume 110 (2024), p. 191 | DOI:10.1090/pspum/110/02007
- Complexity and asymptotics of structure constants, Open Problems in Algebraic Combinatorics, Volume 110 (2024), p. 61 | DOI:10.1090/pspum/110/02016
- , Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation (2023), p. 434 | DOI:10.1145/3597066.3597113
- Unimodality of partition polynomials related to Borwein’s conjecture, The Ramanujan Journal, Volume 61 (2023) no. 4, p. 1063 | DOI:10.1007/s11139-023-00721-5
- Semi-invariants of binary forms and Sylvester’s theorem, The Ramanujan Journal, Volume 59 (2022) no. 1, p. 297 | DOI:10.1007/s11139-021-00505-9
- Semi-invariants of binary forms pertaining to a unimodality theorem of Reiner and Stanton, International Journal of Mathematics, Volume 32 (2021) no. 12 | DOI:10.1142/s0129167x21400036
- Rigged Configurations and Unimodality, Representation Theory, Mathematical Physics, and Integrable Systems, Volume 340 (2021), p. 453 | DOI:10.1007/978-3-030-78148-4_16
- Applications of Gaussian Binomials to Coding Theory for Deletion Error Correction, Annals of Combinatorics, Volume 24 (2020) no. 2, p. 379 | DOI:10.1007/s00026-020-00494-4
- On Geometric Complexity Theory: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions, SIAM Journal on Applied Algebra and Geometry, Volume 4 (2020) no. 2, p. 354 | DOI:10.1137/19m1287638
- Counting Partitions inside a Rectangle, SIAM Journal on Discrete Mathematics, Volume 34 (2020) no. 4, p. 2388 | DOI:10.1137/20m1315828
- Quasipolynomials and Maximal Coefficients of Gaussian Polynomials, Annals of Combinatorics, Volume 23 (2019) no. 3-4, p. 589 | DOI:10.1007/s00026-019-00467-2
- Asymptotics of the Number of Geodesics in the Discrete Heisenberg Group, Journal of Mathematical Sciences, Volume 240 (2019) no. 5, p. 525 | DOI:10.1007/s10958-019-04370-2
- An overpartition analogue of q-binomial coefficients, II: Combinatorial proofs and (q,t)-log concavity, Journal of Combinatorial Theory, Series A, Volume 158 (2018), p. 228 | DOI:10.1016/j.jcta.2018.03.011
- Strict unimodality of plucking polynomials of rooted trees, Journal of Knot Theory and Its Ramifications, Volume 27 (2018) no. 07, p. 1841009 | DOI:10.1142/s0218216518410092
- Geometric complexity theory and matrix powering, Differential Geometry and its Applications, Volume 55 (2017), p. 106 | DOI:10.1016/j.difgeo.2017.07.001
- Bounds on certain classes of Kronecker and q-binomial coefficients, Journal of Combinatorial Theory, Series A, Volume 147 (2017), p. 1 | DOI:10.1016/j.jcta.2016.10.004
- Some Asymptotic Results on q-Binomial Coefficients, Annals of Combinatorics, Volume 20 (2016) no. 3, p. 623 | DOI:10.1007/s00026-016-0319-8
- Permanent versus determinant: Not via saturations, Proceedings of the American Mathematical Society, Volume 145 (2016) no. 3, p. 1247 | DOI:10.1090/proc/13310
- Kronecker coefficients for some near-rectangular partitions, Journal of Algebra, Volume 429 (2015), p. 287 | DOI:10.1016/j.jalgebra.2015.01.018
- A combinatorial proof of strict unimodality for q-binomial coefficients, Discrete Mathematics, Volume 335 (2014), p. 20 | DOI:10.1016/j.disc.2014.07.001
- Unimodality via Kronecker products, Journal of Algebraic Combinatorics, Volume 40 (2014) no. 4, p. 1103 | DOI:10.1007/s10801-014-0520-y
- A diagrammatic approach to Kronecker squares, Journal of Combinatorial Theory, Series A, Volume 127 (2014), p. 243 | DOI:10.1016/j.jcta.2014.06.002
Cité par 27 documents. Sources : Crossref
Commentaires - Politique