In this note, we prove a comparison principle for the log canonical threshold of plurisubharmonic functions.
Dans cette note, nous démontrons un principe de comparaison pour le seuil log-canonique des fonctions plurisousharmoniques.
Accepted:
Published online:
Phạm Hoàng Hiệp 1
@article{CRMATH_2013__351_11-12_441_0, author = {Phạm Ho\`ang Hiệp}, title = {A comparison principle for the log canonical threshold}, journal = {Comptes Rendus. Math\'ematique}, pages = {441--443}, publisher = {Elsevier}, volume = {351}, number = {11-12}, year = {2013}, doi = {10.1016/j.crma.2013.06.013}, language = {en}, }
Phạm Hoàng Hiệp. A comparison principle for the log canonical threshold. Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 441-443. doi : 10.1016/j.crma.2013.06.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.06.013/
[1] The general definition of the complex Monge–Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004), pp. 159-179
[2] Bounds for log canonical thresholds with applications to birational rigidity, Math. Res. Lett., Volume 10 (2003), pp. 219-236
[3] Monge–Ampère operators, Lelong numbers and intersection theory (V. Ancona; A. Silva, eds.), Complex Analysis and Geometry, Univ. Series in Math., Plenum Press, New York, 1993
[4] A sharp lower bound for the log canonical threshold, Acta Math. (2013) (in press) | arXiv
[5] Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Super. (4), Volume 34 (2001), pp. 525-556
[6] Attenuating the singularities of plurisubharmonic functions, Ann. Pol. Math., Volume 60 (1994), pp. 173-197
[7] The range of the complex Monge–Ampère operator, II, Indiana Univ. Math. J., Volume 44 (1995), pp. 765-782
[8] Sous-ensembles analytiques dʼordre fini ou infini dans , Bull. Soc. Math. Fr., Volume 100 (1972), pp. 353-408
Cited by Sources:
Comments - Policy