We study the hit problem, set up by F. Peterson, of finding a minimal set of generators for the polynomial algebra as a module over the mod-2 Steenrod algebra, . In this Note, we study a minimal set of generators for -module in some so-called generic degrees and apply these results to explicitly determine the hit problem for .
Nous étudions le problème suivant soulevé par F. Peterson : déterminer un système minimal de générateurs comme module sur lʼalgèbre de Steenrod pour lʼalgèbre polynomiale , problème appelé hit problem en anglais. Dans ce but, nous étudions un ensemble minimal de générateurs pour le -module dans certains degrés dits génériques. En appliquant ces résultats, nous déterminons explicitement le hit problem pour .
Accepted:
Published online:
Nguyễn Sum 1
@article{CRMATH_2013__351_13-14_565_0, author = {Nguyễn Sum}, title = {On the hit problem for the polynomial algebra}, journal = {Comptes Rendus. Math\'ematique}, pages = {565--568}, publisher = {Elsevier}, volume = {351}, number = {13-14}, year = {2013}, doi = {10.1016/j.crma.2013.07.016}, language = {en}, }
Nguyễn Sum. On the hit problem for the polynomial algebra. Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 565-568. doi : 10.1016/j.crma.2013.07.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.016/
[1] The boundedness conjecture for the action of the Steenrod algebra on polynomials, Manchester, 1990 (N. Ray; G. Walker, eds.) (London Math. Soc. Lecture Notes Ser.), Volume vol. 176, Cambridge Univ. Press, Cambridge (1992), pp. 203-216 (MR1232207)
[2] Representations of the homology of BV and the Steenrod algebra II, Sant Feliu de Guíxols, 1994 (Progr. Math.), Volume vol. 136, Birkhäuser Verlag, Basel, Switzerland (1996), pp. 143-154 (MR1397726)
[3] Products of projective spaces as Steenrod modules, Johns Hopkins University, 1990 (PhD thesis)
[4] Generators of the cohomology of , Toyama University, 2003 (preprint)
[5] -générateurs génériques pour lʼalgèbre polynomiale, Adv. Math., Volume 186 (2004), pp. 334-362 (MR2073910)
[6] Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 5, pp. 1785-1837 (MR2445834)
[7] Generators of as a module over the Steenrod algebra, Abstr. Amer. Math. Soc., Volume 833 (April 1987)
[8] On characterizing summands in the classifying space of a group, I, Amer. J. Math., Volume 112 (1990), pp. 737-748 (MR1073007)
[9] On the subalgebra of annihilated by Steenrod operations, J. Pure Appl. Algebra, Volume 127 (1998), pp. 273-288 (MR1617199)
[10] The transfer in homological algebra, Math. Z., Volume 202 (1989), pp. 493-523 (MR1022818)
[11] On the action of the Steenrod squares on polynomial algebras, Proc. Amer. Math. Soc., Volume 111 (1991), pp. 577-583 (MR1045150)
[12] Cohomology Operations, Ann. of Math. Stud., vol. 50, Princeton University Press, Princeton, NJ, 1962 (MR0145525)
[13] N. Sum, The hit problem for the polynomial algebra of four variables, Quy Nhơn University, Viet Nam, 2007, preprint, 240 pages.
[14] The negative answer to Kamekoʼs conjecture on the hit problem, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 669-672 (MR2652495)
[15] The negative answer to Kamekoʼs conjecture on the hit problem, Adv. Math., Volume 225 (2010), pp. 2365-2390 (MR2680169)
[16] Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc., Volume 105 (1989), pp. 307-309 (MR0974986)
Cited by Sources:
☆ The work was supported in part by a grant of NAFOSTED.
Comments - Policy