Comptes Rendus
Algebraic Geometry
On natural deformations of symplectic automorphisms of manifolds of K3[n] type
[Déformations naturelles des automorphismes symplectiques sur les variétés de type K3[n]]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 561-564.

In the present paper, we prove that finite symplectic groups of automorphisms of manifolds of K3[n] type can be obtained by deforming natural morphisms arising from K3 surfaces if and only if they satisfy a certain numerical condition.

Dans cette étude, on démontre que tout groupe dʼordre fini des automorphismes symplectiques sur les variétés de type K3[n] sʼobtient comme déformation des automorphismes naturels provenant dʼune surface K3 si et seulement si il satisfait une certaine condition numérique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.07.020

Giovanni Mongardi 1

1 Mathematisches Institut der Universität Bonn, Endenicher Allee, 60, 53115 Bonn, Germany
@article{CRMATH_2013__351_13-14_561_0,
     author = {Giovanni Mongardi},
     title = {On natural deformations of symplectic automorphisms of manifolds of $ K{3}^{[n]}$ type},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {561--564},
     publisher = {Elsevier},
     volume = {351},
     number = {13-14},
     year = {2013},
     doi = {10.1016/j.crma.2013.07.020},
     language = {en},
}
TY  - JOUR
AU  - Giovanni Mongardi
TI  - On natural deformations of symplectic automorphisms of manifolds of $ K{3}^{[n]}$ type
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 561
EP  - 564
VL  - 351
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2013.07.020
LA  - en
ID  - CRMATH_2013__351_13-14_561_0
ER  - 
%0 Journal Article
%A Giovanni Mongardi
%T On natural deformations of symplectic automorphisms of manifolds of $ K{3}^{[n]}$ type
%J Comptes Rendus. Mathématique
%D 2013
%P 561-564
%V 351
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2013.07.020
%G en
%F CRMATH_2013__351_13-14_561_0
Giovanni Mongardi. On natural deformations of symplectic automorphisms of manifolds of $ K{3}^{[n]}$ type. Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 561-564. doi : 10.1016/j.crma.2013.07.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.020/

[1] A. Beauville Some remarks on Kähler manifolds with c1=0, Progr. Math., Volume 39 (1983), pp. 1-26

[2] A. Beauville Variétés kählériennes dont la première classe de Chern est nulle, J. Differential Geom., Volume 18 (1983) no. 4, pp. 755-782

[3] A. Beauville et al. Géométrie des surfaces K3 : modules et périodes, Astérisque, Volume 126 (1985), pp. 1-193

[4] S. Boissière Automorphismes naturels de lʼespace de Douady de points sur une surface, Canad. J. Math., Volume 64 (2012) no. 1, pp. 3-23

[5] S. Boissière; A. Sarti A note on automorphisms and birational transformations of holomorphic symplectic manifolds, Proc. Amer. Math. Soc., Volume 140 (2012) no. 12, pp. 4053-4062

[6] K. Hashimoto Finite symplectic actions on the K3 lattice, Nagoya Math. J., Volume 206 (2012), pp. 99-153

[7] B. Hassett; Y. Tschinkel Hodge theory and Lagrangian planes on generalized Kummer fourfolds (preprint) | arXiv

[8] D. Huybrechts Compact Hyperkähler manifolds, Nordfjordeid, 2001 (Universitext), Springer-Verlag (2003), pp. 161-225

[9] D. Huybrechts, A global Torelli theorem for Hyperkähler manifolds (after Verbitsky), in: Semin. Bourbaki, 2010–2011, No. 1040.

[10] G. Mongardi Symplectic involutions on deformations of K3[2], Cent. Eur. J. Math., Volume 10 (2012) no. 4, pp. 1472-1485

[11] S. Mukai Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., Volume 94 (1988), pp. 183-221

[12] V.V. Nikulin Finite automorphism groups of Kählerian K3 surfaces, Tr. Mosk. Mat. Obs., Volume 38 (1979), pp. 75-137 (in Russian)

  • Annalisa Grossi; Claudio Onorati; Davide Cesare Veniani Symplectic birational transformations of finite order on O’Grady’s sixfolds, Kyoto Journal of Mathematics, Volume 63 (2023) no. 3 | DOI:10.1215/21562261-10577928
  • Ljudmila Kamenova; Giovanni Mongardi; Alexei Oblomkov Symplectic involutions of K3[n]K3[n] type and Kummer nn type manifolds, Bulletin of the London Mathematical Society, Volume 54 (2022) no. 3, p. 894 | DOI:10.1112/blms.12594
  • CHIARA CAMERE; ALBERTO CATTANEO; ANDREA CATTANEO NON-SYMPLECTIC INVOLUTIONS ON MANIFOLDS OF -TYPE, Nagoya Mathematical Journal, Volume 243 (2021), p. 278 | DOI:10.1017/nmj.2019.43
  • KEIJI OGUISO NO COHOMOLOGICALLY TRIVIAL NONTRIVIAL AUTOMORPHISM OF GENERALIZED KUMMER MANIFOLDS, Nagoya Mathematical Journal, Volume 239 (2020), p. 110 | DOI:10.1017/nmj.2018.29
  • Chiara Camere; Alberto Cattaneo Non-symplectic automorphisms of odd prime order on manifolds of K3[n]-type, manuscripta mathematica, Volume 163 (2020) no. 3-4, p. 299 | DOI:10.1007/s00229-019-01163-4
  • S. Boissière; A. Cattaneo; D. G. Markushevich; A. Sarti On the non-symplectic involutions of the Hilbert square of a K3 surface, Izvestiya: Mathematics, Volume 83 (2019) no. 4, p. 731 | DOI:10.1070/im8823
  • Emilio Franco; Marcos Jardim; Grégoire Menet Brane involutions on irreducible holomorphic symplectic manifolds, Kyoto Journal of Mathematics, Volume 59 (2019) no. 1 | DOI:10.1215/21562261-2018-0009
  • Samuel Boissière; Chiara Camere; Alessandra Sarti Cubic threefolds and hyperkähler manifolds uniformized by the 10-dimensional complex ball, Mathematische Annalen, Volume 373 (2019) no. 3-4, p. 1429 | DOI:10.1007/s00208-018-1766-9
  • Samuel Boissiere; Andrea Cattaneo; Dmitri Genrikhovich Markushevich; Alessandra Sarti Об антисимплектических инволюциях гильбертова квадрата K3-поверхности, Известия Российской академии наук. Серия математическая, Volume 83 (2019) no. 4, p. 86 | DOI:10.4213/im8823
  • Grégoire Menet On the integral cohomology of quotients of manifolds by cyclic groups, Journal de Mathématiques Pures et Appliquées, Volume 119 (2018), p. 280 | DOI:10.1016/j.matpur.2017.11.008
  • Giovanni Mongardi; Kévin Tari; Malte Wandel Prime order automorphisms of generalised Kummer fourfolds, manuscripta mathematica, Volume 155 (2018) no. 3-4, p. 449 | DOI:10.1007/s00229-017-0942-7
  • Samuel Boissière; Chiara Camere; Giovanni Mongardi; Alessandra Sarti Isometries of Ideal Lattices and Hyperkähler Manifolds, International Mathematics Research Notices, Volume 2016 (2016) no. 4, p. 963 | DOI:10.1093/imrn/rnv137
  • Giovanni Mongardi Towards a classification of symplectic automorphisms on manifolds of K3[n] K 3 [ n ] type, Mathematische Zeitschrift, Volume 282 (2016) no. 3-4, p. 651 | DOI:10.1007/s00209-015-1557-x
  • G. Mongardi; M. Wandel Induced automorphisms on irreducible symplectic manifolds:, Journal of the London Mathematical Society, Volume 92 (2015) no. 1, p. 123 | DOI:10.1112/jlms/jdv012

Cité par 14 documents. Sources : Crossref

Commentaires - Politique