In the present paper, we prove that finite symplectic groups of automorphisms of manifolds of type can be obtained by deforming natural morphisms arising from K3 surfaces if and only if they satisfy a certain numerical condition.
Dans cette étude, on démontre que tout groupe dʼordre fini des automorphismes symplectiques sur les variétés de type sʼobtient comme déformation des automorphismes naturels provenant dʼune surface K3 si et seulement si il satisfait une certaine condition numérique.
Accepted:
Published online:
Giovanni Mongardi 1
@article{CRMATH_2013__351_13-14_561_0, author = {Giovanni Mongardi}, title = {On natural deformations of symplectic automorphisms of manifolds of $ K{3}^{[n]}$ type}, journal = {Comptes Rendus. Math\'ematique}, pages = {561--564}, publisher = {Elsevier}, volume = {351}, number = {13-14}, year = {2013}, doi = {10.1016/j.crma.2013.07.020}, language = {en}, }
Giovanni Mongardi. On natural deformations of symplectic automorphisms of manifolds of $ K{3}^{[n]}$ type. Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 561-564. doi : 10.1016/j.crma.2013.07.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.020/
[1] Some remarks on Kähler manifolds with , Progr. Math., Volume 39 (1983), pp. 1-26
[2] Variétés kählériennes dont la première classe de Chern est nulle, J. Differential Geom., Volume 18 (1983) no. 4, pp. 755-782
[3] et al. Géométrie des surfaces K3 : modules et périodes, Astérisque, Volume 126 (1985), pp. 1-193
[4] Automorphismes naturels de lʼespace de Douady de points sur une surface, Canad. J. Math., Volume 64 (2012) no. 1, pp. 3-23
[5] A note on automorphisms and birational transformations of holomorphic symplectic manifolds, Proc. Amer. Math. Soc., Volume 140 (2012) no. 12, pp. 4053-4062
[6] Finite symplectic actions on the K3 lattice, Nagoya Math. J., Volume 206 (2012), pp. 99-153
[7] Hodge theory and Lagrangian planes on generalized Kummer fourfolds (preprint) | arXiv
[8] Compact Hyperkähler manifolds, Nordfjordeid, 2001 (Universitext), Springer-Verlag (2003), pp. 161-225
[9] D. Huybrechts, A global Torelli theorem for Hyperkähler manifolds (after Verbitsky), in: Semin. Bourbaki, 2010–2011, No. 1040.
[10] Symplectic involutions on deformations of , Cent. Eur. J. Math., Volume 10 (2012) no. 4, pp. 1472-1485
[11] Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., Volume 94 (1988), pp. 183-221
[12] Finite automorphism groups of Kählerian K3 surfaces, Tr. Mosk. Mat. Obs., Volume 38 (1979), pp. 75-137 (in Russian)
Cited by Sources:
Comments - Policy