We investigate the jumping conics of stable vector bundles of rank 2 on a smooth quadric surface Q with the Chern classes and with respect to the ample line bundle . As a consequence, we prove that the set of jumping conics uniquely determines and that the moduli space of such bundles is rational.
Nous étudions les coniques de saut des fibrés vectoriels stables de rang 2 sur une surface quadratique lisse Q de classes de Chern et relativement au fibré en droites ample . Nous en déduisons que lʼensemble des coniques de saut détermine de maniére unique et que lʼespace de modules de ce type de fibrés est rationnel.
Accepted:
Published online:
Sukmoon Huh 1
@article{CRMATH_2013__351_13-14_557_0, author = {Sukmoon Huh}, title = {Cubic symmetroids and vector bundles on a quadric surface}, journal = {Comptes Rendus. Math\'ematique}, pages = {557--560}, publisher = {Elsevier}, volume = {351}, number = {13-14}, year = {2013}, doi = {10.1016/j.crma.2013.07.018}, language = {en}, }
Sukmoon Huh. Cubic symmetroids and vector bundles on a quadric surface. Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 557-560. doi : 10.1016/j.crma.2013.07.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.018/
[1] Footnotes to a theorem of I. Reider, LʼAquila, 1988 (Lect. Notes Math.), Volume vol. 1417, Springer, Berlin (1990), pp. 67-74
[2] Rationality of moduli spaces of vector bundles on rational surfaces, Nagoya Math. J., Volume 162 (2002), pp. 43-69
[3] Classical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, UK, 2012 (xii+639 pp)
[4] On the moduli of vector bundles on an algebraic surface, Ann. of Math. (2), Volume 106 (1977) no. 1, pp. 45-60
[5] Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York, 1977
[6] Jumping conics on a smooth quadric in , Ann. Mat. Pura Appl. (4), Volume 190 (2011) no. 2, pp. 195-208
[7] Moduli of stable sheaves on a smooth quadric and a Brill–Noether locus, J. Pure Appl. Algebra, Volume 215 (2011) no. 9, pp. 2099-2105
[8] Lectures on Vector Bundles, Cambridge Studies in Advanced Mathematics, vol. 54, Cambridge University Press, Cambridge, 1997 (Translated by A. Maciocia)
[9] Lectures on Hilbert Schemes of Points on Surfaces, University Lecture Series, vol. 18, American Mathematical Society, Providence, RI, 1999
Cited by Sources:
Comments - Policy