In this paper, by means of the weight function and the technique of real analysis, and introducing the Γ-function and the Riemann ζ-function to jointly characterize the constant factor, a Hilbert-type integral inequality with the mixed kernel of multi-parameters and its equivalent form are given; their constant factors are proved to be the best possible. By selecting special parameter values, some meaningful results are obtained.
Dans ce texte, nous obtenons, sous deux formes équivalentes, une inégalité intégrale de type Hilbert, avec un noyau mixte dépendant de plusieurs paramètres. Nous utilisons à cette fin des fonctions poids, des techniques dʼanalyse réelle et les fonctions gamma dʼEuler et zéta de Riemann, afin dʼexpliciter le facteur constant (cʼest-à-dire ne dépendant que des paramètres), dont il est démontré quʼil est le meilleur possible. En choisissant des valeurs spéciales des paramètres, nous en déduisons quelques résultats significatifs.
Accepted:
Published online:
Qiong Liu 1; Wenbing Sun 1
@article{CRMATH_2013__351_15-16_605_0, author = {Qiong Liu and Wenbing Sun}, title = {A {Hilbert-type} integral inequality with the mixed kernel of multi-parameters}, journal = {Comptes Rendus. Math\'ematique}, pages = {605--611}, publisher = {Elsevier}, volume = {351}, number = {15-16}, year = {2013}, doi = {10.1016/j.crma.2013.09.001}, language = {en}, }
Qiong Liu; Wenbing Sun. A Hilbert-type integral inequality with the mixed kernel of multi-parameters. Comptes Rendus. Mathématique, Volume 351 (2013) no. 15-16, pp. 605-611. doi : 10.1016/j.crma.2013.09.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.001/
[1] Inequalities, Cambridge University Press, Cambridge, UK, 1952
[2] An Introduction to Special Function, Beijing Press, Beijing, China, 2000
[3] Introduction to Real Analysis, Hunan Education Press, Changsha, China, 1996
[4] Applied Inequalities, Shandong Science and Technology Press, Jinan, China, 2004
[5] A generalization of the Hardy–Hilbertʼs inequality and its application, Acta Math. Sin. (Chin. Ser.), Volume 52 (2009) no. 2, pp. 237-244
[6] A Hilbert-type integral inequality with the kernel of hyperbolic secant function, J. Zhejiang Univ. Sci. Ed., Volume 40 (2013) no. 3, pp. 255-259
[7] Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Boston, 1991
[8] Complex-Variable Function and Integral Transform, Higher Education Press, 2003
[9] The norm of a Hilbert-type linear operator and applications, J. Math. Anal. Appl., Volume 325 (2007), pp. 529-541
[10] A survey of the study of Hilbert-type inequalities with parameters, Adv. Math., Volume 38 (2009) no. 3, pp. 257-258
[11] Hilbert-type integral inequality with non-homogeneous kernel, J. Shanghai Univ. Nat. Sci., Volume 17 (2011) no. 5, pp. 603-605
Cited by Sources:
☆ Fund Project National Natural Science Foundation of China (No. 11171280). Scientific support project of the Hunan Education Department (Nos. 10C1186, 11C1133).
Comments - Policy