[Différentiabilité longitudinale du groupoïde dʼholonomie]
Iakovos Androulidakis and Georges Skandalis have defined a holonomy groupoid for any singular foliation. This groupoid, whose topology is usually quite bad, is the starting point for the study of longitudinal pseudodifferential calculus on such foliation and its associated index theory. These studies can be highly simplified under the assumption of the holonomy groupoid being longitudinally smooth. In this note, we rephrase the period bounding lemma that asserts that a vector field on a compact manifold admits a strictly positive lower bound for its periodic orbits in order to prove that the holonomy groupoid is always longitudinally smooth.
Iakovos Androulidakis et Georges Skandalis ont défini un groupoïde dʼholonomie pour tout feuilletage singulier. Ce groupoïde, dont la topologie est généralement assez singulière, est le point de départ dʼun calcul pseudodifferentiel longitudinal ainsi que dʼune théorie de lʼindice pour de tels feuilletages. Ces travaux sont grandement simplifiés sous lʼhypothèse de différentiabilité longitudinale du groupoïde dʼholonomie. Dans cette note, nous réinterprétons le period bounding lemma pour montrer que le groupoïde dʼholonomie est toujours longitudinalement lisse.
Accepté le :
Publié le :
Claire Debord 1
@article{CRMATH_2013__351_15-16_613_0, author = {Claire Debord}, title = {Longitudinal smoothness of the holonomy groupoid}, journal = {Comptes Rendus. Math\'ematique}, pages = {613--616}, publisher = {Elsevier}, volume = {351}, number = {15-16}, year = {2013}, doi = {10.1016/j.crma.2013.07.025}, language = {en}, }
Claire Debord. Longitudinal smoothness of the holonomy groupoid. Comptes Rendus. Mathématique, Volume 351 (2013) no. 15-16, pp. 613-616. doi : 10.1016/j.crma.2013.07.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.025/
[1] Transversal Mappings and Flows, W.A. Benjamin, Inc., New York, Amsterdam, 1967
[2] The holonomy groupoid of a singular foliation, J. Reine Angew. Math., Volume 626 (2009), pp. 1-37
[3] Smoothness of holonomy covers for singular foliations and essential isotropy, Math. Z. (2013) (in press) | arXiv
[4] Integrability of Lie brackets, Ann. of Math. (2), Volume 157 (2003) no. 2, pp. 575-620
[5] Lie Groupoids and Lie Algebroids in Differential Geometry, London Mathematical Society Lecture Note Series, vol. 124, Cambridge University Press, Cambridge, 1987
[6] Critical points of the length of a Killing vector field, J. Differ. Geom., Volume 7 (1972), pp. 143-148
- Fourier Quasicrystals on
, The Journal of Geometric Analysis, Volume 35 (2025) no. 3 | DOI:10.1007/s12220-025-01911-x - Tangent groupoid and tangent cones in sub-Riemannian geometry, Duke Mathematical Journal, Volume 173 (2024) no. 16, pp. 3179-3218 | DOI:10.1215/00127094-2024-0013 | Zbl:7974310
- Integration of Singular Foliations via Paths, International Mathematics Research Notices, Volume 2022 (2022) no. 23, p. 18401 | DOI:10.1093/imrn/rnab177
- The holonomy of a singular leaf, Selecta Mathematica. New Series, Volume 28 (2022) no. 2, p. 38 (Id/No 45) | DOI:10.1007/s00029-021-00753-z | Zbl:1491.53031
- The universal Lie
-algebroid of a singular foliation, Documenta Mathematica, Volume 25 (2020), pp. 1571-1652 | DOI:10.25537/dm.2020v25.1571-1652 | Zbl:1453.53033 - Hausdorff Morita equivalence of singular foliations, Annals of Global Analysis and Geometry, Volume 55 (2019) no. 1, pp. 99-132 | DOI:10.1007/s10455-018-9620-6 | Zbl:1415.53014
- A Baum-Connes conjecture for singular foliations, Annals of
-Theory, Volume 4 (2019) no. 4, pp. 561-620 | DOI:10.2140/akt.2019.4.561 | Zbl:1437.19002 - Almost regular Poisson manifolds and their holonomy groupoids, Selecta Mathematica. New Series, Volume 23 (2017) no. 3, pp. 2291-2330 | DOI:10.1007/s00029-017-0319-5 | Zbl:1380.53032
- Stability of Lie groupoid
-algebras, Journal of Geometry and Physics, Volume 105 (2016), pp. 66-74 | DOI:10.1016/j.geomphys.2016.03.011 | Zbl:1339.58007 - Measures with locally finite support and spectrum, Proceedings of the National Academy of Sciences of the United States of America, Volume 113 (2016) no. 12, pp. 3152-3158 | DOI:10.1073/pnas.1600685113 | Zbl:1367.28002
- Quasicrystals and Poisson’s summation formula, Inventiones mathematicae, Volume 200 (2015) no. 2, p. 585 | DOI:10.1007/s00222-014-0542-z
- Holonomy transformations for singular foliations, Advances in Mathematics, Volume 256 (2014), pp. 348-397 | DOI:10.1016/j.aim.2014.02.003 | Zbl:1294.53025
Cité par 12 documents. Sources : Crossref, zbMATH
Commentaires - Politique