Comptes Rendus
Harmonic Analysis
Measures with uniformly discrete support and spectrum
[Mesures à support et spectre uniformément discrets]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 15-16, pp. 599-603.

Nous caractérisons les mesures sur R ayant toutes les deux leurs support et spectre uniformément discrets. Un résultat similaire est obtenu dans Rn sous une restriction de discrétion plus forte.

We characterize the measures on R which have both their support and spectrum uniformly discrete. A similar result is obtained in Rn under a stronger discreteness restriction.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.09.007

Nir Lev 1 ; Alexander Olevskii 2

1 Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel
2 School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
@article{CRMATH_2013__351_15-16_599_0,
     author = {Nir Lev and Alexander Olevskii},
     title = {Measures with uniformly discrete support and spectrum},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {599--603},
     publisher = {Elsevier},
     volume = {351},
     number = {15-16},
     year = {2013},
     doi = {10.1016/j.crma.2013.09.007},
     language = {en},
}
TY  - JOUR
AU  - Nir Lev
AU  - Alexander Olevskii
TI  - Measures with uniformly discrete support and spectrum
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 599
EP  - 603
VL  - 351
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2013.09.007
LA  - en
ID  - CRMATH_2013__351_15-16_599_0
ER  - 
%0 Journal Article
%A Nir Lev
%A Alexander Olevskii
%T Measures with uniformly discrete support and spectrum
%J Comptes Rendus. Mathématique
%D 2013
%P 599-603
%V 351
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2013.09.007
%G en
%F CRMATH_2013__351_15-16_599_0
Nir Lev; Alexander Olevskii. Measures with uniformly discrete support and spectrum. Comptes Rendus. Mathématique, Volume 351 (2013) no. 15-16, pp. 599-603. doi : 10.1016/j.crma.2013.09.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.007/

[1] A. Córdoba La formule sommatoire de Poisson, C. R. Acad. Sci. Paris, Ser. I, Volume 306 (1988), pp. 373-376

[2] A. Córdoba Dirac combs, Lett. Math. Phys., Volume 17 (1989), pp. 191-196

[3] F. Dyson Birds and frogs, Not. Am. Math. Soc., Volume 56 (2009), pp. 212-223

[4] J.-P. Kahane; S. Mandelbrojt Sur lʼéquation fonctionnelle de Riemann et la formule sommatoire de Poisson, Ann. Sci. Éc. Norm. Super., Volume 75 (1958), pp. 57-80

[5] M.N. Kolountzakis; J.C. Lagarias Structure of tilings of the line by a function, Duke Math. J., Volume 82 (1996), pp. 653-678

[6] J.C. Lagarias Meyerʼs concept of quasicrystal and quasiregular sets, Commun. Math. Phys., Volume 179 (1996), pp. 365-376

[7] J.C. Lagarias Mathematical quasicrystals and the problem of diffraction, Directions in Mathematical Quasicrystals, CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, 2000, pp. 61-93

[8] Y. Meyer Nombres de Pisot, nombres de Salem et analyse harmonique, Lect. Notes Math., vol. 117, Springer-Verlag, 1970

[9] Y. Meyer Algebraic Numbers and Harmonic Analysis, N.-Holl. Math. Libr., vol. 2, North-Holland Publishing Co./American Elsevier Publishing Co., Inc., Amsterdam–London/New York, 1972

[10] Y. Meyer Quasicrystals, Diophantine approximation and algebraic numbers, Les Houches, 1994, Springer, Berlin (1995), pp. 3-16

[11] M. Mitkovski; A. Poltoratski Pólya sequences, Toeplitz kernels and gap theorems, Adv. Math., Volume 224 (2010), pp. 1057-1070

[12] R.V. Moody Meyer sets and their duals, Waterloo, ON, 1995 (NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci.), Volume vol. 489, Kluwer Acad. Publ., Dordrecht, The Netherlands (1997), pp. 403-441

[13] A. Olevskii; A. Ulanovskii Universal sampling and interpolation of band-limited signals, Geom. Funct. Anal., Volume 18 (2008), pp. 1029-1052

[14] A. Olevskii; A. Ulanovskii On multi-dimensional sampling and interpolation, Anal. Math. Phys., Volume 2 (2012), pp. 149-170

  • Wayne M. Lawton; August K. Tsikh Fourier quasicrystals on Rn, The Journal of Geometric Analysis, Volume 35 (2025) no. 3, p. 50 (Id/No 93) | DOI:10.1007/s12220-025-01911-x | Zbl:7990064
  • Yves Meyer Crystalline Measures and Wave Front Sets, The Mathematical Heritage of Guido Weiss (2025), p. 347 | DOI:10.1007/978-3-031-76793-7_16
  • S. Yu. Favorov Almost periodic distributions and crystalline measures, Matematychni Studiï, Volume 61 (2024) no. 1, pp. 97-108 | DOI:10.30970/ms.61.1.97-108 | Zbl:1537.42014
  • João P. G. Ramos; Mateus Sousa Perturbed interpolation formulae and applications, Analysis PDE, Volume 16 (2023) no. 10, pp. 2327-2384 | DOI:10.2140/apde.2023.16.2327 | Zbl:1537.41001
  • S. Yu. Favorov Fourier quasicrystals and distributions on Euclidean spaces with spectrum of bounded density, Analysis Mathematica, Volume 49 (2023) no. 3, pp. 747-764 | DOI:10.1007/s10476-023-0228-0 | Zbl:1538.46047
  • Sergii Yu. Favorov Temperate distributions with locally finite support and spectrum on Euclidean spaces, Israel Journal of Mathematics, Volume 255 (2023) no. 2, pp. 705-728 | DOI:10.1007/s11856-022-2450-z | Zbl:1521.42012
  • Yves Meyer Curved Model Sets and Crystalline Measures, Theoretical Physics, Wavelets, Analysis, Genomics (2023), p. 389 | DOI:10.1007/978-3-030-45847-8_17
  • João P. G. Ramos; Mateus Sousa Fourier uniqueness pairs of powers of integers, Journal of the European Mathematical Society (JEMS), Volume 24 (2022) no. 12, pp. 4327-4351 | DOI:10.4171/jems/1194 | Zbl:1504.42014
  • John J. Benedetto; Chenzhi Zhao Uniqueness theory for model sets, and spectral superresolution, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, Volume 32 (2021) no. 1, pp. 109-133 | DOI:10.4171/rlm/929 | Zbl:1467.42014
  • Nir Lev; Gilad Reti Poisson summation formulas involving the sum-of-squares function, Israel Journal of Mathematics, Volume 246 (2021) no. 1, pp. 403-421 | DOI:10.1007/s11856-021-2252-8 | Zbl:1487.42019
  • Nir Lev; Gilad Reti Crystalline temperate distributions with uniformly discrete support and spectrum, Journal of Functional Analysis, Volume 281 (2021) no. 4, p. 15 (Id/No 109072) | DOI:10.1016/j.jfa.2021.109072 | Zbl:1476.46047
  • S. Yu. Favorov Tempered distributions with discrete support and spectrum, Bulletin of the Hellenic Mathematical Society, Volume 62 (2018), pp. 66-79 | Zbl:1425.46026
  • Nir Lev; Alexander Olevskii Fourier quasicrystals and discreteness of the diffraction spectrum, Advances in Mathematics, Volume 315 (2017), pp. 1-26 | DOI:10.1016/j.aim.2017.05.015 | Zbl:1372.52027
  • Yves Meyer Guinand's measures are almost periodic distributions, Bulletin of the Hellenic Mathematical Society, Volume 61 (2017), pp. 11-20 | Zbl:1425.42008
  • V. P. Palamodov A geometric characterization of a class of Poisson type distributions, The Journal of Fourier Analysis and Applications, Volume 23 (2017) no. 5, pp. 1227-1237 | DOI:10.1007/s00041-016-9509-3 | Zbl:1402.52024
  • Michael Baake; David Damanik; Johannes Kellendonk; Daniel Lenz Spectral structures and topological methods in mathematical quasicrystals. Abstracts from the workshop held October 1–7, 2017, Oberwolfach Rep. 14, No. 4, 2781-2845, 2017 | DOI:10.4171/owr/2017/46 | Zbl:1409.00064
  • Basarab Matei Exact reconstruction of the nonnegative measures using model sets, Asymptotic Analysis, Volume 97 (2016) no. 3-4, pp. 291-299 | DOI:10.3233/asy-151353 | Zbl:1404.42024
  • Mihail N. Kolountzakis Fourier pairs of discrete support with little structure, The Journal of Fourier Analysis and Applications, Volume 22 (2016) no. 1, pp. 1-5 | DOI:10.1007/s00041-015-9416-z | Zbl:1333.42057
  • Yves F. Meyer Measures with locally finite support and spectrum, Proceedings of the National Academy of Sciences, Volume 113 (2016) no. 12, p. 3152 | DOI:10.1073/pnas.1600685113
  • Basarab Matei, 2015 International Conference on Sampling Theory and Applications (SampTA) (2015), p. 578 | DOI:10.1109/sampta.2015.7148957
  • Nir Lev; Alexander Olevskii Quasicrystals and Poisson's summation formula, Inventiones Mathematicae, Volume 200 (2015) no. 2, pp. 585-606 | DOI:10.1007/s00222-014-0542-z | Zbl:1402.28002
  • Jens V. Fischer On the duality of discrete and periodic functions, Mathematics, Volume 3 (2015) no. 2, pp. 299-318 | DOI:10.3390/math3020299 | Zbl:1329.46037

Cité par 22 documents. Sources : Crossref, zbMATH

Research supported in part by the Israel Science Foundation.

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: