[Mesures à support et spectre uniformément discrets]
Nous caractérisons les mesures sur
We characterize the measures on
Accepté le :
Publié le :
Nir Lev 1 ; Alexander Olevskii 2
@article{CRMATH_2013__351_15-16_599_0, author = {Nir Lev and Alexander Olevskii}, title = {Measures with uniformly discrete support and spectrum}, journal = {Comptes Rendus. Math\'ematique}, pages = {599--603}, publisher = {Elsevier}, volume = {351}, number = {15-16}, year = {2013}, doi = {10.1016/j.crma.2013.09.007}, language = {en}, }
Nir Lev; Alexander Olevskii. Measures with uniformly discrete support and spectrum. Comptes Rendus. Mathématique, Volume 351 (2013) no. 15-16, pp. 599-603. doi : 10.1016/j.crma.2013.09.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.007/
[1] La formule sommatoire de Poisson, C. R. Acad. Sci. Paris, Ser. I, Volume 306 (1988), pp. 373-376
[2] Dirac combs, Lett. Math. Phys., Volume 17 (1989), pp. 191-196
[3] Birds and frogs, Not. Am. Math. Soc., Volume 56 (2009), pp. 212-223
[4] Sur lʼéquation fonctionnelle de Riemann et la formule sommatoire de Poisson, Ann. Sci. Éc. Norm. Super., Volume 75 (1958), pp. 57-80
[5] Structure of tilings of the line by a function, Duke Math. J., Volume 82 (1996), pp. 653-678
[6] Meyerʼs concept of quasicrystal and quasiregular sets, Commun. Math. Phys., Volume 179 (1996), pp. 365-376
[7] Mathematical quasicrystals and the problem of diffraction, Directions in Mathematical Quasicrystals, CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, 2000, pp. 61-93
[8] Nombres de Pisot, nombres de Salem et analyse harmonique, Lect. Notes Math., vol. 117, Springer-Verlag, 1970
[9] Algebraic Numbers and Harmonic Analysis, N.-Holl. Math. Libr., vol. 2, North-Holland Publishing Co./American Elsevier Publishing Co., Inc., Amsterdam–London/New York, 1972
[10] Quasicrystals, Diophantine approximation and algebraic numbers, Les Houches, 1994, Springer, Berlin (1995), pp. 3-16
[11] Pólya sequences, Toeplitz kernels and gap theorems, Adv. Math., Volume 224 (2010), pp. 1057-1070
[12] Meyer sets and their duals, Waterloo, ON, 1995 (NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci.), Volume vol. 489, Kluwer Acad. Publ., Dordrecht, The Netherlands (1997), pp. 403-441
[13] Universal sampling and interpolation of band-limited signals, Geom. Funct. Anal., Volume 18 (2008), pp. 1029-1052
[14] On multi-dimensional sampling and interpolation, Anal. Math. Phys., Volume 2 (2012), pp. 149-170
Cité par Sources :
☆ Research supported in part by the Israel Science Foundation.
Commentaires - Politique