We characterize the measures on which have both their support and spectrum uniformly discrete. A similar result is obtained in under a stronger discreteness restriction.
Nous caractérisons les mesures sur ayant toutes les deux leurs support et spectre uniformément discrets. Un résultat similaire est obtenu dans sous une restriction de discrétion plus forte.
Accepted:
Published online:
Nir Lev 1; Alexander Olevskii 2
@article{CRMATH_2013__351_15-16_599_0, author = {Nir Lev and Alexander Olevskii}, title = {Measures with uniformly discrete support and spectrum}, journal = {Comptes Rendus. Math\'ematique}, pages = {599--603}, publisher = {Elsevier}, volume = {351}, number = {15-16}, year = {2013}, doi = {10.1016/j.crma.2013.09.007}, language = {en}, }
Nir Lev; Alexander Olevskii. Measures with uniformly discrete support and spectrum. Comptes Rendus. Mathématique, Volume 351 (2013) no. 15-16, pp. 599-603. doi : 10.1016/j.crma.2013.09.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.007/
[1] La formule sommatoire de Poisson, C. R. Acad. Sci. Paris, Ser. I, Volume 306 (1988), pp. 373-376
[2] Dirac combs, Lett. Math. Phys., Volume 17 (1989), pp. 191-196
[3] Birds and frogs, Not. Am. Math. Soc., Volume 56 (2009), pp. 212-223
[4] Sur lʼéquation fonctionnelle de Riemann et la formule sommatoire de Poisson, Ann. Sci. Éc. Norm. Super., Volume 75 (1958), pp. 57-80
[5] Structure of tilings of the line by a function, Duke Math. J., Volume 82 (1996), pp. 653-678
[6] Meyerʼs concept of quasicrystal and quasiregular sets, Commun. Math. Phys., Volume 179 (1996), pp. 365-376
[7] Mathematical quasicrystals and the problem of diffraction, Directions in Mathematical Quasicrystals, CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, 2000, pp. 61-93
[8] Nombres de Pisot, nombres de Salem et analyse harmonique, Lect. Notes Math., vol. 117, Springer-Verlag, 1970
[9] Algebraic Numbers and Harmonic Analysis, N.-Holl. Math. Libr., vol. 2, North-Holland Publishing Co./American Elsevier Publishing Co., Inc., Amsterdam–London/New York, 1972
[10] Quasicrystals, Diophantine approximation and algebraic numbers, Les Houches, 1994, Springer, Berlin (1995), pp. 3-16
[11] Pólya sequences, Toeplitz kernels and gap theorems, Adv. Math., Volume 224 (2010), pp. 1057-1070
[12] Meyer sets and their duals, Waterloo, ON, 1995 (NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci.), Volume vol. 489, Kluwer Acad. Publ., Dordrecht, The Netherlands (1997), pp. 403-441
[13] Universal sampling and interpolation of band-limited signals, Geom. Funct. Anal., Volume 18 (2008), pp. 1029-1052
[14] On multi-dimensional sampling and interpolation, Anal. Math. Phys., Volume 2 (2012), pp. 149-170
Cited by Sources:
☆ Research supported in part by the Israel Science Foundation.
Comments - Politique