[Mesures à support et spectre uniformément discrets]
Nous caractérisons les mesures sur
We characterize the measures on
Accepté le :
Publié le :
Nir Lev 1 ; Alexander Olevskii 2
@article{CRMATH_2013__351_15-16_599_0, author = {Nir Lev and Alexander Olevskii}, title = {Measures with uniformly discrete support and spectrum}, journal = {Comptes Rendus. Math\'ematique}, pages = {599--603}, publisher = {Elsevier}, volume = {351}, number = {15-16}, year = {2013}, doi = {10.1016/j.crma.2013.09.007}, language = {en}, }
Nir Lev; Alexander Olevskii. Measures with uniformly discrete support and spectrum. Comptes Rendus. Mathématique, Volume 351 (2013) no. 15-16, pp. 599-603. doi : 10.1016/j.crma.2013.09.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.007/
[1] La formule sommatoire de Poisson, C. R. Acad. Sci. Paris, Ser. I, Volume 306 (1988), pp. 373-376
[2] Dirac combs, Lett. Math. Phys., Volume 17 (1989), pp. 191-196
[3] Birds and frogs, Not. Am. Math. Soc., Volume 56 (2009), pp. 212-223
[4] Sur lʼéquation fonctionnelle de Riemann et la formule sommatoire de Poisson, Ann. Sci. Éc. Norm. Super., Volume 75 (1958), pp. 57-80
[5] Structure of tilings of the line by a function, Duke Math. J., Volume 82 (1996), pp. 653-678
[6] Meyerʼs concept of quasicrystal and quasiregular sets, Commun. Math. Phys., Volume 179 (1996), pp. 365-376
[7] Mathematical quasicrystals and the problem of diffraction, Directions in Mathematical Quasicrystals, CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, 2000, pp. 61-93
[8] Nombres de Pisot, nombres de Salem et analyse harmonique, Lect. Notes Math., vol. 117, Springer-Verlag, 1970
[9] Algebraic Numbers and Harmonic Analysis, N.-Holl. Math. Libr., vol. 2, North-Holland Publishing Co./American Elsevier Publishing Co., Inc., Amsterdam–London/New York, 1972
[10] Quasicrystals, Diophantine approximation and algebraic numbers, Les Houches, 1994, Springer, Berlin (1995), pp. 3-16
[11] Pólya sequences, Toeplitz kernels and gap theorems, Adv. Math., Volume 224 (2010), pp. 1057-1070
[12] Meyer sets and their duals, Waterloo, ON, 1995 (NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci.), Volume vol. 489, Kluwer Acad. Publ., Dordrecht, The Netherlands (1997), pp. 403-441
[13] Universal sampling and interpolation of band-limited signals, Geom. Funct. Anal., Volume 18 (2008), pp. 1029-1052
[14] On multi-dimensional sampling and interpolation, Anal. Math. Phys., Volume 2 (2012), pp. 149-170
- Fourier quasicrystals on
, The Journal of Geometric Analysis, Volume 35 (2025) no. 3, p. 50 (Id/No 93) | DOI:10.1007/s12220-025-01911-x | Zbl:7990064 - Crystalline Measures and Wave Front Sets, The Mathematical Heritage of Guido Weiss (2025), p. 347 | DOI:10.1007/978-3-031-76793-7_16
- Almost periodic distributions and crystalline measures, Matematychni Studiï, Volume 61 (2024) no. 1, pp. 97-108 | DOI:10.30970/ms.61.1.97-108 | Zbl:1537.42014
- Perturbed interpolation formulae and applications, Analysis PDE, Volume 16 (2023) no. 10, pp. 2327-2384 | DOI:10.2140/apde.2023.16.2327 | Zbl:1537.41001
- Fourier quasicrystals and distributions on Euclidean spaces with spectrum of bounded density, Analysis Mathematica, Volume 49 (2023) no. 3, pp. 747-764 | DOI:10.1007/s10476-023-0228-0 | Zbl:1538.46047
- Temperate distributions with locally finite support and spectrum on Euclidean spaces, Israel Journal of Mathematics, Volume 255 (2023) no. 2, pp. 705-728 | DOI:10.1007/s11856-022-2450-z | Zbl:1521.42012
- Curved Model Sets and Crystalline Measures, Theoretical Physics, Wavelets, Analysis, Genomics (2023), p. 389 | DOI:10.1007/978-3-030-45847-8_17
- Fourier uniqueness pairs of powers of integers, Journal of the European Mathematical Society (JEMS), Volume 24 (2022) no. 12, pp. 4327-4351 | DOI:10.4171/jems/1194 | Zbl:1504.42014
- Uniqueness theory for model sets, and spectral superresolution, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, Volume 32 (2021) no. 1, pp. 109-133 | DOI:10.4171/rlm/929 | Zbl:1467.42014
- Poisson summation formulas involving the sum-of-squares function, Israel Journal of Mathematics, Volume 246 (2021) no. 1, pp. 403-421 | DOI:10.1007/s11856-021-2252-8 | Zbl:1487.42019
- Crystalline temperate distributions with uniformly discrete support and spectrum, Journal of Functional Analysis, Volume 281 (2021) no. 4, p. 15 (Id/No 109072) | DOI:10.1016/j.jfa.2021.109072 | Zbl:1476.46047
- Tempered distributions with discrete support and spectrum, Bulletin of the Hellenic Mathematical Society, Volume 62 (2018), pp. 66-79 | Zbl:1425.46026
- Fourier quasicrystals and discreteness of the diffraction spectrum, Advances in Mathematics, Volume 315 (2017), pp. 1-26 | DOI:10.1016/j.aim.2017.05.015 | Zbl:1372.52027
- Guinand's measures are almost periodic distributions, Bulletin of the Hellenic Mathematical Society, Volume 61 (2017), pp. 11-20 | Zbl:1425.42008
- A geometric characterization of a class of Poisson type distributions, The Journal of Fourier Analysis and Applications, Volume 23 (2017) no. 5, pp. 1227-1237 | DOI:10.1007/s00041-016-9509-3 | Zbl:1402.52024
- Spectral structures and topological methods in mathematical quasicrystals. Abstracts from the workshop held October 1–7, 2017, Oberwolfach Rep. 14, No. 4, 2781-2845, 2017 | DOI:10.4171/owr/2017/46 | Zbl:1409.00064
- Exact reconstruction of the nonnegative measures using model sets, Asymptotic Analysis, Volume 97 (2016) no. 3-4, pp. 291-299 | DOI:10.3233/asy-151353 | Zbl:1404.42024
- Fourier pairs of discrete support with little structure, The Journal of Fourier Analysis and Applications, Volume 22 (2016) no. 1, pp. 1-5 | DOI:10.1007/s00041-015-9416-z | Zbl:1333.42057
- Measures with locally finite support and spectrum, Proceedings of the National Academy of Sciences, Volume 113 (2016) no. 12, p. 3152 | DOI:10.1073/pnas.1600685113
- , 2015 International Conference on Sampling Theory and Applications (SampTA) (2015), p. 578 | DOI:10.1109/sampta.2015.7148957
- Quasicrystals and Poisson's summation formula, Inventiones Mathematicae, Volume 200 (2015) no. 2, pp. 585-606 | DOI:10.1007/s00222-014-0542-z | Zbl:1402.28002
- On the duality of discrete and periodic functions, Mathematics, Volume 3 (2015) no. 2, pp. 299-318 | DOI:10.3390/math3020299 | Zbl:1329.46037
Cité par 22 documents. Sources : Crossref, zbMATH
☆ Research supported in part by the Israel Science Foundation.
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier