[Une Note sur les hypersurfaces des espaces euclidiens]
Dans cette courte Note, nous considérons une hypersurface compacte, connexe orientable M de lʼespace euclidien , de fonction support positive ou nulle et dʼintégrande de Minkowski σ. Nous montrons que la fonction courbure moyenne α est la solution de lʼéquation de Poisson si et seulement si M est isométrique à une sphère de dimension n et courbure constante égale à c. Un résultat similaire est démontré pour une hypersurface de courbure scalaire satisfaisant lʼéquation de Poisson .
In this short Note, we consider a compact and connected orientable hypersurface M of the Euclidean space with non-negative support function and Minkowskiʼs integrand σ, and show that the mean curvature function α is the solution of the Poisson equation if and only if M is isometric to n-sphere of constant curvature c. A similar result is proved for a hypersurface with scalar curvature satisfying the Poisson equation .
Accepté le :
Publié le :
Sharief Deshmukh 1
@article{CRMATH_2013__351_15-16_631_0, author = {Sharief Deshmukh}, title = {A {Note} on hypersurfaces of a {Euclidean} space}, journal = {Comptes Rendus. Math\'ematique}, pages = {631--634}, publisher = {Elsevier}, volume = {351}, number = {15-16}, year = {2013}, doi = {10.1016/j.crma.2013.09.003}, language = {en}, }
Sharief Deshmukh. A Note on hypersurfaces of a Euclidean space. Comptes Rendus. Mathématique, Volume 351 (2013) no. 15-16, pp. 631-634. doi : 10.1016/j.crma.2013.09.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.003/
[1] Geometric analysis lecture notes http://www2.imperial.ac.uk/~skdona/ (available online at)
[2] Lecture Notes on Geometric Analysis, Global Analysis Research Center, Seoul National University, Korea, 1993
[3] Curvature and function theory on Riemannian manifolds, Surveys in Differential Geometry: Papers Dedicated to Atiyah, Bott, Hirzebruch, and Singer, vol. VII, International Press, 2000, pp. 375-432
Cité par Sources :
☆ This work is sponsored by the Distinguished Scientist Fellowship Program (DSFP), King Saud University, Riyadh, Saudi Arabia.
Commentaires - Politique