Let n be a positive integer and be a polynomial with nonnegative integer coefficients. We prove that , except that and and that , with being an integer and , where denotes the smallest integer, which is not less than . This improves and extends the lower bounds obtained by M. Nair in 1982, B. Farhi in 2007 and S.M. Oon in 2013.
Soit n un entier ⩾1 et un polynôme à coefficients entiers ⩾0. Nous démontrons que, à lʼexception de certains cas explicites, on a , où dénote le plus petit entier . Ceci améliore, et étend, les bornes inférieures obtenues par M. Nair en 1982, B. Farhi en 2007 et S.M. Oon en 2013.
Accepted:
Published online:
Shaofang Hong 1, 2; Yuanyuan Luo 1; Guoyou Qian 3; Chunlin Wang 1
@article{CRMATH_2013__351_21-22_781_0, author = {Shaofang Hong and Yuanyuan Luo and Guoyou Qian and Chunlin Wang}, title = {Uniform lower bound for the least common multiple of a polynomial sequence}, journal = {Comptes Rendus. Math\'ematique}, pages = {781--785}, publisher = {Elsevier}, volume = {351}, number = {21-22}, year = {2013}, doi = {10.1016/j.crma.2013.10.005}, language = {en}, }
TY - JOUR AU - Shaofang Hong AU - Yuanyuan Luo AU - Guoyou Qian AU - Chunlin Wang TI - Uniform lower bound for the least common multiple of a polynomial sequence JO - Comptes Rendus. Mathématique PY - 2013 SP - 781 EP - 785 VL - 351 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2013.10.005 LA - en ID - CRMATH_2013__351_21-22_781_0 ER -
%0 Journal Article %A Shaofang Hong %A Yuanyuan Luo %A Guoyou Qian %A Chunlin Wang %T Uniform lower bound for the least common multiple of a polynomial sequence %J Comptes Rendus. Mathématique %D 2013 %P 781-785 %V 351 %N 21-22 %I Elsevier %R 10.1016/j.crma.2013.10.005 %G en %F CRMATH_2013__351_21-22_781_0
Shaofang Hong; Yuanyuan Luo; Guoyou Qian; Chunlin Wang. Uniform lower bound for the least common multiple of a polynomial sequence. Comptes Rendus. Mathématique, Volume 351 (2013) no. 21-22, pp. 781-785. doi : 10.1016/j.crma.2013.10.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.005/
[1] Introductory Algebraic Number Theory, Cambridge University Press, Cambridge, 2004
[2] A limit involving least common multiples, Amer. Math. Monthly, Volume 109 (2002), pp. 393-394
[3] Memoire sur les nombres premiers, J. Math. Pures Appl., Volume 17 (1852), pp. 366-390
[4] Minoration non triviales du plus petit commun multiple de certaines suites finies dʼentiers, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005), pp. 469-474
[5] Nontrivial lower bounds for the least common multiple of some finite sequences of integers, J. Number Theory, Volume 125 (2007), pp. 393-411
[6] New results on the least common multiple of consecutive integers, Proc. Amer. Math. Soc., Volume 137 (2009), pp. 1933-1939
[7] On the product of the primes, Canad. Math. Bull., Volume 15 (1972), pp. 33-37
[8] Lower bounds for the least common multiple of finite arithmetic progressions, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 695-698
[9] Further improvements of lower bounds for the least common multiple of arithmetic progressions, Proc. Amer. Math. Soc., Volume 138 (2010), pp. 809-813
[10] The least common multiple of consecutive arithmetic progression terms, Proc. Edinb. Math. Soc., Volume 54 (2011), pp. 431-441
[11] The least common multiple of a sequence of products of linear polynomials, Acta Math. Hung., Volume 135 (2012), pp. 160-167
[12] On Chebyshev-type inequalities for primes, Amer. Math. Monthly, Volume 89 (1982), pp. 126-129
[13] Note on the lower bound of least common multiple, Abstr. Appl. Anal. (2013) (Art. ID 218125, 4 p)
[14] Asymptotic behavior of the least common multiple of consecutive arithmetic progression terms, Arch. Math., Volume 100 (2013), pp. 337-345
[15] New lower bounds for the least common multiples of arithmetic progressions, Chin. Ann. Math., Ser. B (2013) | DOI
Cited by Sources:
☆ The work was supported partially by National Science Foundation of China Grant #11371260, by the Ph.D. Programs Foundation of Ministry of Education of China Grant #20100181110073 and by Postdoctoral Science Foundation of China Grant #2013M530109.
Comments - Policy