We use a discrete approximation of the motion by crystalline curvature to define an evolution of sets from a single point (nucleation) following a criterion of “maximization” of the perimeter, formally giving a backward version of the motion by crystalline curvature. This evolution depends on the approximation chosen.
Nous utilisons une approximation discrète du mouvement par la courbure cristalline pour définir une évolution des ensemples à partir dʼun seul point (nucléation) selon un critère de « maximisation » du périmètre, ce qui donne fomallement une version du mouvement en arrière par courbure cristalline. Cette évolution dépend de lʼapproximation choisie.
Accepted:
Published online:
Andrea Braides 1; Giovanni Scilla 2
@article{CRMATH_2013__351_21-22_803_0, author = {Andrea Braides and Giovanni Scilla}, title = {Nucleation and backward motion of discrete interfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {803--806}, publisher = {Elsevier}, volume = {351}, number = {21-22}, year = {2013}, doi = {10.1016/j.crma.2013.10.008}, language = {en}, }
Andrea Braides; Giovanni Scilla. Nucleation and backward motion of discrete interfaces. Comptes Rendus. Mathématique, Volume 351 (2013) no. 21-22, pp. 803-806. doi : 10.1016/j.crma.2013.10.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.008/
[1] Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint, Netw. Heterog. Media, Volume 1 (2006), pp. 85-107
[2] Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differ. Geom., Volume 42 (1995) no. 1, pp. 1-22
[3] Curvature driven flows: a variational approach, SIAM J. Control Optim., Volume 50 (1983), pp. 387-438
[4] Approximation of Free-Discontinuity Problems, Lecture Notes in Mathematics, vol. 1694, Springer-Verlag, Berlin, 1998
[5] Local Minimization, Variational Evolution and Γ-Convergence, Lecture Notes in Mathematics, vol. 2094, Springer-Verlag, Berlin, 2013
[6] Motion and pinning of discrete interfaces, Arch. Ration. Mech. Anal., Volume 95 (2010), pp. 469-498
[7] A. Braides, G. Scilla, Nucleation and backward motion of anisotropic discrete interfaces, in preparation.
[8] Motion of curves by crystalline curvature, including triple junctions and boundary points (R.E. Greene; S.T. Yau, eds.), Differential Geometry, Proceedings of Symposia in Pure Mathematics, vol. 54 (part 1), 1993, pp. 417-438
Cited by Sources:
Comments - Policy