The occurrence of a finite time singularity is shown for a free boundary problem modeling microelectromechanical systems (MEMS) when the applied voltage exceeds some value. The model involves a singular nonlocal reaction term and a nonlinear curvature term taking into account large deformations.
Lʼapparition dʼune singularité en temps fini est établie pour un problème à frontière libre décrivant lʼévolution spatio-temporelle dʼun microsystème électromécanique lorsque la tension appliquée est suffisamment élevée. Le modèle inclut un terme de réaction singulier et un terme non linéaire de courbure, prenant en compte les grandes déformations.
Accepted:
Published online:
Joachim Escher 1; Philippe Laurençot 2; Christoph Walker 1
@article{CRMATH_2013__351_21-22_807_0, author = {Joachim Escher and Philippe Lauren\c{c}ot and Christoph Walker}, title = {Finite time singularity in a free boundary problem modeling {MEMS}}, journal = {Comptes Rendus. Math\'ematique}, pages = {807--812}, publisher = {Elsevier}, volume = {351}, number = {21-22}, year = {2013}, doi = {10.1016/j.crma.2013.10.004}, language = {en}, }
TY - JOUR AU - Joachim Escher AU - Philippe Laurençot AU - Christoph Walker TI - Finite time singularity in a free boundary problem modeling MEMS JO - Comptes Rendus. Mathématique PY - 2013 SP - 807 EP - 812 VL - 351 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2013.10.004 LA - en ID - CRMATH_2013__351_21-22_807_0 ER -
Joachim Escher; Philippe Laurençot; Christoph Walker. Finite time singularity in a free boundary problem modeling MEMS. Comptes Rendus. Mathématique, Volume 351 (2013) no. 21-22, pp. 807-812. doi : 10.1016/j.crma.2013.10.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.004/
[1] Non-linear effects on canonical MEMS models, Eur. J. Appl. Math., Volume 22 (2011), pp. 455-470
[2] Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Anal., Volume 75 (2012), pp. 5086-5112
[3] A free boundary problem in the theory of electrically actuated microdevices, Appl. Math. Lett., Volume 20 (2007), pp. 1232-1236
[4] A parabolic free boundary problem modeling electrostatic MEMS, Arch. Ration. Mech. Anal. (2013) (in press)
[5] Dynamics of a free boundary problem with curvature modeling electrostatic MEMS (submitted for publication) | arXiv
[6] Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, Courant Lect. Notes Math., vol. 20, Courant Institute of Mathematical Sciences, New York, 2010
[7] Analysis of the dynamics and touchdown in a model of electrostatic MEMS, SIAM J. Appl. Math., Volume 67 (2007), pp. 434-446
[8] Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties, SIAM J. Appl. Math., Volume 66 (2005), pp. 309-338
[9] A stationary free boundary problem modeling electrostatic MEMS, Arch. Ration. Mech. Anal., Volume 207 (2013), pp. 139-158
[10] Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003
Cited by Sources:
Comments - Policy