We improve Bernsteinʼs inequality for sums of non-bounded random variables. In particular, we establish a sharp large deviation expansion similar to that of Cramér and Bahadur–Rao.
Nous améliorons lʼinégalité de Bernstein pour les sommes de variables aléatoires non bornées. En particulier, nous établissons un développement de grandes déviations précises de type Cramér et Bahadur–Rao.
Accepted:
Published online:
Xiequan Fan 1, 2; Ion Grama 1; Quansheng Liu 1
@article{CRMATH_2013__351_21-22_845_0, author = {Xiequan Fan and Ion Grama and Quansheng Liu}, title = {Sharp large deviations under {Bernstein's} condition}, journal = {Comptes Rendus. Math\'ematique}, pages = {845--848}, publisher = {Elsevier}, volume = {351}, number = {21-22}, year = {2013}, doi = {10.1016/j.crma.2013.10.015}, language = {en}, }
Xiequan Fan; Ion Grama; Quansheng Liu. Sharp large deviations under Bernsteinʼs condition. Comptes Rendus. Mathématique, Volume 351 (2013) no. 21-22, pp. 845-848. doi : 10.1016/j.crma.2013.10.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.015/
[1] Lower bounds for probabilities of large deviations for sums of independent random variables, Theory Probab. Appl., Volume 34 (1989) no. 4, pp. 565-575
[2] On deviations of the sample mean, Ann. Math. Stat., Volume 31 (1960), pp. 1015-1027
[3] Sharp large deviations for the Ornstein–Uhlenbeck process, Theory Probab. Appl., Volume 46 (2006) no. 1, pp. 1-19
[4] The Theory of Probabilities, Gastehizdat Publishing House, Moscow, 1946
[5] Sur un nouveau théorème-limite de la théorie des probabilités, Actual. Sci. Ind., Volume 736 (1938), pp. 5-23
[6] Large Deviations Techniques and Applications, Springer, New York, 1998
[7] Sharp large deviations in nonparametric estimation, J. Nonparametr. Stat., Volume 18 (2006), pp. 293-306
[8] Strong large deviations for arbitrary sequences of random variables, Ann. Inst. Stat. Math., Volume 65 (2013) no. 1, pp. 49-67
[9] Lower bounds for the probabilities of large deviations of sums of independent random variables, Theory Probab. Appl., Volume 46 (2002), pp. 79-102 (728–735)
[10] Sums of Independent Random Variables, Springer-Verlag, Berlin, 1975
[11] The missing factor in Hoeffdingʼs inequalities, Ann. Inst. Henri Poincaré Probab. Stat., Volume 31 (1995), pp. 689-702
Cited by Sources:
Comments - Policy