We prove that a -small area preserving the homeomorphism of a closed surface with vanishing mass flow cannot displace a topological disk of large area. This resolves the displaced disks problem posed by F. Béguin, S. Crovisier, and F. Le Roux.
Nous démontrons quʼune petite surface préservant lʼhoméomorphisme dʼune surface fermée avec un flux de masse disparaissant ne peut pas déplacer un disque topologique de grande surface. Ceci résout le problème des disques déplacés posé par F. Béguin, S. Crovisier et F. Le Roux.
Accepted:
Published online:
Sobhan Seyfaddini 1
@article{CRMATH_2013__351_21-22_841_0, author = {Sobhan Seyfaddini}, title = {The displaced disks problem via symplectic topology}, journal = {Comptes Rendus. Math\'ematique}, pages = {841--843}, publisher = {Elsevier}, volume = {351}, number = {21-22}, year = {2013}, doi = {10.1016/j.crma.2013.10.007}, language = {en}, }
Sobhan Seyfaddini. The displaced disks problem via symplectic topology. Comptes Rendus. Mathématique, Volume 351 (2013) no. 21-22, pp. 841-843. doi : 10.1016/j.crma.2013.10.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.10.007/
[1] F. Béguin, S. Crovisier, F. Le Roux, Private communication.
[2] On continuity of quasimorphisms for symplectic maps, Perspectives in Analysis, Geometry, and Topology, Prog. Math., vol. 296, Birkhäuser/Springer, New York, 2012, pp. 169-197 (With an appendix by Michael Khanevsky)
[3] Structure of the group of homeomorphisms preserving a good measure on a compact manifold, Ann. Sci. Éc. Norm. Super. (4), Volume 13 (1980) no. 1, pp. 45-93
[4] Commutators and diffeomorphisms of surfaces, Ergod. Theory Dyn. Syst., Volume 24 (2004) no. 5, pp. 1591-1617
[5] Propriétés dynamiques génériques des homéomorphismes conservatifs, Ensaios Matemáticos, Mathematical Surveys, vol. 22, Sociedade Brasileira de Matemática, Rio de Janeiro, 2012
[6] A.D. Hanlon, D.N. Dore, Area preserving maps on : A lower bound on the -norm using symplectic spectral invariants, in preparation.
[7] Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, The Breadth of Symplectic and Poisson Geometry, Prog. Math., vol. 232, Birkhäuser Boston, Boston, MA, 2005, pp. 525-570
[8] On the action spectrum for closed symplectically aspherical manifolds, Pac. J. Math., Volume 193 (2000) no. 2, pp. 419-461
[9] -limits of Hamiltonian paths and the Oh–Schwarz spectral invariants, Int. Math. Res. Not. (2012) | DOI
[10] Symplectic topology as the geometry of generating functions, Math. Ann., Volume 292 (1992), pp. 685-710
Cited by Sources:
Comments - Policy