We show by an example that the Demailly approximation sequence of a plurisubharmonic function, constructed via Bergman kernels, is not a decreasing sequence in general.
Nous montrons par un exemple que le résultat de Demailly relatif à l'approximation d'une fonction pluri-sous-harmonique via les noyaux de Bergman ne produit pas en général une suite décroissante.
Accepted:
Published online:
Dano Kim 1
@article{CRMATH_2014__352_5_387_0,
author = {Dano Kim},
title = {A remark on the approximation of plurisubharmonic functions},
journal = {Comptes Rendus. Math\'ematique},
pages = {387--389},
year = {2014},
publisher = {Elsevier},
volume = {352},
number = {5},
doi = {10.1016/j.crma.2013.10.024},
language = {en},
}
Dano Kim. A remark on the approximation of plurisubharmonic functions. Comptes Rendus. Mathématique, Volume 352 (2014) no. 5, pp. 387-389. doi: 10.1016/j.crma.2013.10.024
[1] Some applications of the Ohsawa–Takegoshi extension theorem, Expo. Math., Volume 27 (2009) no. 2, pp. 125-135
[2] Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992), pp. 361-409
[3] Analytic Methods in Algebraic Geometry, International Press, Boston, 2012
[4] Pseudo-effective line bundles on compact Khler manifolds, Int. J. Math., Volume 12 (2001) no. 6, pp. 689-741
[5] (Ergeb. Math. Ihrer Grenzgeb.), Volume vol. 3, Springer-Verlag, Berlin (2004), pp. 48-49
Cited by Sources:
Comments - Policy
