We consider two parabolic equations coupled by a matrix , where is a Jordan block of order 1, and controlled by a single localized function, or by a single boundary control. The support of the coupling coefficient, q, and the control domain may be disjoint. We exhibit an explicit minimal time of null-controllability, .
On considère deux équations paraboliques couplées par une matrice , où est un bloc de Jordan d'ordre 1, et contrôlées par un seul contrôle localisé en espace ou frontière. Le support du coefficient de couplage, q, et celui du contrôle peuvent être disjoints. Nous mettons en évidence un temps minimal de contrôlabilité à 0, .
Accepted:
Published online:
Farid Ammar Khodja 1; Assia Benabdallah 2; Manuel González-Burgos 3; Luz de Teresa 4
@article{CRMATH_2014__352_5_391_0, author = {Farid Ammar Khodja and Assia Benabdallah and Manuel Gonz\'alez-Burgos and Luz de Teresa}, title = {Minimal time of controllability of two parabolic equations with disjoint control and coupling domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {391--396}, publisher = {Elsevier}, volume = {352}, number = {5}, year = {2014}, doi = {10.1016/j.crma.2014.03.004}, language = {en}, }
TY - JOUR AU - Farid Ammar Khodja AU - Assia Benabdallah AU - Manuel González-Burgos AU - Luz de Teresa TI - Minimal time of controllability of two parabolic equations with disjoint control and coupling domains JO - Comptes Rendus. Mathématique PY - 2014 SP - 391 EP - 396 VL - 352 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2014.03.004 LA - en ID - CRMATH_2014__352_5_391_0 ER -
%0 Journal Article %A Farid Ammar Khodja %A Assia Benabdallah %A Manuel González-Burgos %A Luz de Teresa %T Minimal time of controllability of two parabolic equations with disjoint control and coupling domains %J Comptes Rendus. Mathématique %D 2014 %P 391-396 %V 352 %N 5 %I Elsevier %R 10.1016/j.crma.2014.03.004 %G en %F CRMATH_2014__352_5_391_0
Farid Ammar Khodja; Assia Benabdallah; Manuel González-Burgos; Luz de Teresa. Minimal time of controllability of two parabolic equations with disjoint control and coupling domains. Comptes Rendus. Mathématique, Volume 352 (2014) no. 5, pp. 391-396. doi : 10.1016/j.crma.2014.03.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.03.004/
[1] Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE's by a single control, Math. Control Signals Systems, Volume 26 (2014) no. 1, pp. 1-46
[2] Indirect controllability of locally coupled systems under geometric conditions, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 7–8, pp. 395-400
[3] Indirect controllability of locally coupled wave-type systems and applications, J. Math. Pures Appl. (9), Volume 99 (2013) no. 5, pp. 544-576
[4] Null-controllability of some reaction–diffusion systems with one control force, J. Math. Anal. Appl., Volume 320 (2006) no. 2, pp. 928-943
[5] Controllability of some systems of parabolic equations, Málaga (2012) http://personal.us.es/manoloburgos/es/conferencias/
[6] A new relation between the condensation index of complex sequences and the null controllability of parabolic systems, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 19–20, pp. 743-746
[7] F. Ammar Khodja, A. Benabdallah, M. González-Burgos, L. de Teresa, Controllability of parabolic systems with disjoint control and coupling domains, in preparation.
[8] Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients, Math. Control Relat. Fields (2014) (in press) | HAL
[9] Controllability of two coupled wave equations on a compact manifold, Arch. Ration. Mech. Anal. (2014) (in press) | HAL
[10] Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 272-292
[11] Boundary controllability of parabolic coupled equations, J. Funct. Anal., Volume 259 (2010) no. 7, pp. 1720-1758
[12] Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Port. Math., Volume 67 (2010) no. 1, pp. 91-113
[13] Unique continuation principle for systems of parabolic equations, ESAIM Control Optim. Calc. Var., Volume 16 (2010) no. 2, pp. 247-274
[14] Exact controllability of a cascade system of conservative equations, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 5–6, pp. 291-296
[15] Insensitizing controls for a semilinear heat equation, Comm. Partial Differential Equations, Volume 25 (2000) no. 1–2, pp. 39-72
Cited by Sources:
Comments - Policy