We prove a weak- bound for the Walsh–Carleson operator for p near 1, improving on a theorem of Sjölin. We relate our result to the conjectures that the Walsh–Fourier and Fourier series of a function converge for almost every .
Nous prouvons une estimation pour l'opérateur de Walsh–Carleson, pour p proche de 1, qui constitue une amélioration d'un théorème de Sjölin. Nous interprétons nos résultats par rapport à la conjecture selon laquelle la série de Fourier d'une fonction est convergente presque partout.
Accepted:
Published online:
Francesco Di Plinio 1, 2
@article{CRMATH_2014__352_4_327_0, author = {Francesco Di Plinio}, title = {Weak-$ {L}^{p}$ bounds for the {Carleson} and {Walsh{\textendash}Carleson} operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {327--331}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2014.02.005}, language = {en}, }
Francesco Di Plinio. Weak-$ {L}^{p}$ bounds for the Carleson and Walsh–Carleson operators. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 327-331. doi : 10.1016/j.crma.2014.02.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.02.005/
[1] Convergence of Fourier series, Moscow, 1995 (East J. Approx.), Volume 2 (1996) no. 2, pp. 187-196
[2] Pointwise Convergence of Fourier Series, Lecture Notes in Mathematics, vol. 1785, Springer-Verlag, Berlin, 2002
[3] On convergence and growth of partial sums of Fourier series, Acta Math., Volume 116 (1966), pp. 135-157
[4] Almost everywhere convergent Fourier series, J. Fourier Anal. Appl., Volume 18 (2012) no. 2, pp. 266-286
[5] Endpoint bounds for the quartile operator, J. Fourier Anal. Appl., Volume 19 (2013) no. 4, pp. 836-856
[6] Lacunary Fourier and Walsh–Fourier series near , Collect. Math. (2014) (in press, preprint) | arXiv | DOI
[7] On the convergence of lacunary Walsh–Fourier series, Bull. Lond. Math. Soc., Volume 44 (2012) no. 2, pp. 241-254
[8] Pointwise convergence of Fourier series, Ann. Math. (2), Volume 98 (1973), pp. 551-571
[9] Weighted norm inequalities for maximally modulated singular integral operators, Math. Ann., Volume 331 (2005) no. 2, pp. 359-394
[10] On the convergence of Fourier series, orthogonal expansions and their continuous analogues, Edwardsville, IL, 1967, Southern Illinois Univ. Press, Carbondale, IL (1968), pp. 235-255
[11] Almost everywhere convergence and divergence of Fourier series, International Congress of Mathematicians, vol. II, Eur. Math. Soc., Zürich, Switzerland, 2006, pp. 1393-1403
[12] A proof of boundedness of the Carleson operator, Math. Res. Lett., Volume 7 (2000) no. 4, pp. 361-370
[13] On the pointwise convergence of the sequence of partial Fourier sums along lacunary subsequences, J. Funct. Anal., Volume 263 (2012) no. 11, pp. 3391-3411
[14] On the boundedness of the Carleson operator near , Rev. Mat. Iberoam., Volume 29 (2013) no. 4, pp. 1239-1262
[15] A Calderón–Zygmund decomposition for multiple frequencies and an application to an extension of a lemma of Bourgain, Math. Res. Lett., Volume 17 (2010) no. 3, pp. 529-545
[16] New uniform bounds for a Walsh model of the bilinear Hilbert transform, Indiana Univ. Math. J., Volume 60 (2011) no. 5, pp. 1693-1712
[17] An inequality of Paley and convergence a.e. of Walsh–Fourier series, Ark. Mat., Volume 7 (1969), pp. 551-570
[18] Remarks on a theorem by N.Yu. Antonov, Stud. Math., Volume 158 (2003) no. 1, pp. 79-97
[19] On an extrapolation theorem of Carleson–Sjölin with applications to a.e. convergence of Fourier series, Stud. Math., Volume 94 (1989) no. 3, pp. 235-244
[20] The quartile operator and pointwise convergence of Walsh series, Trans. Amer. Math. Soc., Volume 352 (2000) no. 12, pp. 5745-5766
[21] Wave Packet Analysis, CBMS Regional Conference Series in Mathematics, vol. 105, 2006 (published for the Conference Board of the Mathematical Sciences, Washington, DC)
Cited by Sources:
Comments - Policy