Comptes Rendus
Harmonic analysis
Weak-Lp bounds for the Carleson and Walsh–Carleson operators
[Estimation Lp, pour les opérateurs de Carleson et de Walsh–Carleson]
Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 327-331.

Nous prouvons une estimation Lp, pour l'opérateur de Walsh–Carleson, pour p proche de 1, qui constitue une amélioration d'un théorème de Sjölin. Nous interprétons nos résultats par rapport à la conjecture selon laquelle la série de Fourier d'une fonction fLlogL(T) est convergente presque partout.

We prove a weak-Lp bound for the Walsh–Carleson operator for p near 1, improving on a theorem of Sjölin. We relate our result to the conjectures that the Walsh–Fourier and Fourier series of a function fLlogL(T) converge for almost every xT.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.02.005
Francesco Di Plinio 1, 2

1 INdAM – Cofund Marie Curie Fellow at Dipartimento di Matematica, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
2 The Institute for Scientific Computing and Applied Mathematics, Indiana University, 831 East Third Street, Bloomington, IN 47405, USA
@article{CRMATH_2014__352_4_327_0,
     author = {Francesco Di Plinio},
     title = {Weak-$ {L}^{p}$ bounds for the {Carleson} and {Walsh{\textendash}Carleson} operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {327--331},
     publisher = {Elsevier},
     volume = {352},
     number = {4},
     year = {2014},
     doi = {10.1016/j.crma.2014.02.005},
     language = {en},
}
TY  - JOUR
AU  - Francesco Di Plinio
TI  - Weak-$ {L}^{p}$ bounds for the Carleson and Walsh–Carleson operators
JO  - Comptes Rendus. Mathématique
PY  - 2014
SP  - 327
EP  - 331
VL  - 352
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2014.02.005
LA  - en
ID  - CRMATH_2014__352_4_327_0
ER  - 
%0 Journal Article
%A Francesco Di Plinio
%T Weak-$ {L}^{p}$ bounds for the Carleson and Walsh–Carleson operators
%J Comptes Rendus. Mathématique
%D 2014
%P 327-331
%V 352
%N 4
%I Elsevier
%R 10.1016/j.crma.2014.02.005
%G en
%F CRMATH_2014__352_4_327_0
Francesco Di Plinio. Weak-$ {L}^{p}$ bounds for the Carleson and Walsh–Carleson operators. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 327-331. doi : 10.1016/j.crma.2014.02.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.02.005/

[1] N.Yu. Antonov Convergence of Fourier series, Moscow, 1995 (East J. Approx.), Volume 2 (1996) no. 2, pp. 187-196

[2] J. Arias de Reyna Pointwise Convergence of Fourier Series, Lecture Notes in Mathematics, vol. 1785, Springer-Verlag, Berlin, 2002

[3] L. Carleson On convergence and growth of partial sums of Fourier series, Acta Math., Volume 116 (1966), pp. 135-157

[4] M.J. Carro; M. Mastylo; L. Rodríguez-Piazza Almost everywhere convergent Fourier series, J. Fourier Anal. Appl., Volume 18 (2012) no. 2, pp. 266-286

[5] C. Demeter; F. Di Plinio Endpoint bounds for the quartile operator, J. Fourier Anal. Appl., Volume 19 (2013) no. 4, pp. 836-856

[6] F. Di Plinio Lacunary Fourier and Walsh–Fourier series near L1, Collect. Math. (2014) (in press, preprint) | arXiv | DOI

[7] Y. Do; M.T. Lacey On the convergence of lacunary Walsh–Fourier series, Bull. Lond. Math. Soc., Volume 44 (2012) no. 2, pp. 241-254

[8] C. Fefferman Pointwise convergence of Fourier series, Ann. Math. (2), Volume 98 (1973), pp. 551-571

[9] L. Grafakos; J.M. Martell; F. Soria Weighted norm inequalities for maximally modulated singular integral operators, Math. Ann., Volume 331 (2005) no. 2, pp. 359-394

[10] R.A. Hunt On the convergence of Fourier series, orthogonal expansions and their continuous analogues, Edwardsville, IL, 1967, Southern Illinois Univ. Press, Carbondale, IL (1968), pp. 235-255

[11] S.V. Konyagin Almost everywhere convergence and divergence of Fourier series, International Congress of Mathematicians, vol. II, Eur. Math. Soc., Zürich, Switzerland, 2006, pp. 1393-1403

[12] M. Lacey; C. Thiele A proof of boundedness of the Carleson operator, Math. Res. Lett., Volume 7 (2000) no. 4, pp. 361-370

[13] V. Lie On the pointwise convergence of the sequence of partial Fourier sums along lacunary subsequences, J. Funct. Anal., Volume 263 (2012) no. 11, pp. 3391-3411

[14] V. Lie On the boundedness of the Carleson operator near L1, Rev. Mat. Iberoam., Volume 29 (2013) no. 4, pp. 1239-1262

[15] F. Nazarov; R. Oberlin; C. Thiele A Calderón–Zygmund decomposition for multiple frequencies and an application to an extension of a lemma of Bourgain, Math. Res. Lett., Volume 17 (2010) no. 3, pp. 529-545

[16] R. Oberlin; C. Thiele New uniform bounds for a Walsh model of the bilinear Hilbert transform, Indiana Univ. Math. J., Volume 60 (2011) no. 5, pp. 1693-1712

[17] P. Sjölin An inequality of Paley and convergence a.e. of Walsh–Fourier series, Ark. Mat., Volume 7 (1969), pp. 551-570

[18] P. Sjölin; F. Soria Remarks on a theorem by N.Yu. Antonov, Stud. Math., Volume 158 (2003) no. 1, pp. 79-97

[19] F. Soria On an extrapolation theorem of Carleson–Sjölin with applications to a.e. convergence of Fourier series, Stud. Math., Volume 94 (1989) no. 3, pp. 235-244

[20] C. Thiele The quartile operator and pointwise convergence of Walsh series, Trans. Amer. Math. Soc., Volume 352 (2000) no. 12, pp. 5745-5766

[21] C. Thiele Wave Packet Analysis, CBMS Regional Conference Series in Mathematics, vol. 105, 2006 (published for the Conference Board of the Mathematical Sciences, Washington, DC)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Equilibrated tractions for the Hybrid High-Order method

Daniele A. Di Pietro; Alexandre Ern

C. R. Math (2015)


Quasi-invariant Gaussian measures for the cubic nonlinear Schrödinger equation with third-order dispersion

Tadahiro Oh; Yoshio Tsutsumi; Nikolay Tzvetkov

C. R. Math (2019)


Global regularity of two-dimensional flocking hydrodynamics

Siming He; Eitan Tadmor

C. R. Math (2017)